Мировые тенденции рынка топливно-энергетических ресурсов. Мировой рынок топливно-энергетических ресурсов, основные тенденции его развития и глобальная энергетическая проблема

Это сырье имеет осадочное органическое происхождение и размещено неравномерно по земному шару. Мировые геологические запасы минерального топлива оцениваются примерно в 14 трлн т, т.е. обеспеченность человечества минеральным топливом составляет порядка 150 лет. По доле в запасах всех видов первичных энергоресурсов (не только топлива) на уголь приходится 65% запасов (по теплотворной способности), а на нефть и газ - 27%, остальные 8% приходятся на ядерное топливо, гидроэнергоресурсы и другие источники. В тоже время структура мирового потребления первичных источников энергии складывается иная: на уголь приходится 27,5%, нефть - 36, газ - 26, на ядерное топливо - 7,5, гидроэнергию и проч. - примерно 3%.

Достоверные запасы угля оцениваются в 1,75 трлн т, причем чуть более половины из них приходится на каменный уголь и несколько менее половины - на бурый. Геологических запасов угля более чем в 8 раз больше, и значительная их доля сосредоточена в Азии - около 55%, однако по достоверным запасам лидирует Северная Америка. Наиболее богатыми углем оказываются США (на них приходится 25% достоверных запасов), Китай (17%), Россия 13%), ЮАР, Австралия, ФРГ и Индия (5-6% на каждую страну). Таким образом, на США, Китай и Россию приходится порядка 55% мировых достоверных запасов угля.

Сегодня угольные ресурсы разведаны в 83 странах; каменного угля добывается около 3,5 млрд. т. и бурого - 1,2 млрд т. Однако во многих развитых странах со второй половины ХХ в. угледобывающую промышленность поразил структурный кризис, вызванный, с одной стороны, острейшей конкуренцией со стороны нефтегазовой промышленности, а с другой - высокой стоимостью, неблагоприятными физико-географическими и экологическими условия добычи. В частности, сократилась добыча угля, отличающегося повышенной сернистостью. В результате многие экономически развитые страны стали в большей степени ориентироваться на импортный уголь из ЮАР, Австралии и других стран. Так, практически прекратилась добыча угля во Франции и Бельгии, а старейшие каменноугольные районы - Рурский и Саарский в Германии, Аппалачский в США - испытывают определенный кризис. Более стабильная ситуация сложилась с буроугольными и теми каменноугольными бассейнами, где добыча ведется более дешевым открытым способом. Кризис не коснулся также стран с низкой стоимостью рабочей силы: здесь угольная промышленность, наоборот, испытывает подъем.

На первое место в мире по добыче угля вышел Китай (около 1,7 млрд т в год). Крупнейшими разработчиками угля являются также США (около 1 млрд т), Индия, Австралия, Россия, ЮАР, ФРГ, Польша; быстро растет добыча угля в Индонезии, Колумбии и ряде других стран. Крупнейшими мировыми экспортерами в последнее десятилетие стали Австралия, обогнавшая США, а также ЮАР, Канада, Польша, Колумбия и Россия (Россия сейчас добывает порядка 300 млн. т. угля, из них более 1/4 экспортирует).

Достоверные запасы нефти из года в год растут, что говорит об активной геологоразведочной работе, проводимой нефтяными компаниями, в результате чего часть геологических запасов переходит в разряд достоверных. Последние оцениваются в 153 млрд. т., а геологические оцениваются в 500 млрд. т. Подавляющая часть достоверных запасов нефти находится в странах с формирующимися рынками (80%), прежде всего в бассейне Персидского залива (65%, в том числе 35% у Саудовской Аравии). На Россию приходится около 6% мировых запасов.

Растет и обеспеченность нефтью: сегодня она составляет, по разным оценкам, от 40 до 60 лет, причем в развитых странах эта цифра падает до 10-15 лет, а в остальных возрастает до 100-150 лет. Более 30% запасов нефти находится в шельфовых зонах морей и океанов. По прогнозам геологов, огромные запасы углеводородного сырья сосредоточены на шельфовых морях российского сектора Арктики и Дальнего Востока.

В середине ХХ столетия мировая добыча нефти росла быстрыми темпами и во многом из-за ее дешевизны для потребителей, однако в начале 70-х гг. ОПЕК (Организация стран - экспортеров нефти) резко повысила экспортную цену на нефть, что привело к замедлению роста спроса на нефть; изменилась также география нефтедобычи - она стала перемещаться в экстремальные районы, что также способствовало росту экспортных цен. Уровень добычи нефти в настоящее время растет значительно медленнее и сейчас составляет порядка 3,6 млрд. т. в год, хотя в последнее время намечается тенденция увеличения темпов добычи нефти в связи с быстро растущим спросом на нее в Китае и некоторых других странах Азии.

Лидирующие позиции в мире по объемам добычи нефти в 2008г. занимают: Россия (488,1 млн. т., что, однако, на 1/5 ниже советского уровня), Саудовская Аравия (480 млн. т.), а далее идут США (294 млн. т.), Иран, КНР, Мексика, Канада, Венесуэла, Казахстан, Норвегия и ряд других стран.

Лишь 45% нефти добывается в развитых странах, а остальная часть добывается вне их, прежде всего в странах - членах ОПЕК хотя их доля в добыче за последнее десятилетие снизилась до чуть более 40%, тем не менее в них сосредоточено более 75% достоверных запасов нефти).

Достоверные запасы природного газа также растут весьма высокими темпами. Сегодня они оцениваются в 156 трлн м 3 (более трети от общегеологических); 40% запасов газа находится в развитых странах, 1/3 сосредоточена в России (в основном в Западной Сибири), значительные запасы природного газа имеются также в Иране (около 1/4 мировых запасов). Обеспеченность добычи природного газа достоверными запасами выше, чем по нефти - 70 лет.

Так же как и нефтеразработка, добыча газа активно перемещается на шельфовые зоны морей и океанов, где сейчас добывается 28% газа. Первое место по добыче природного газа занимает Россия (более 650 млрд м 3 в год, из них треть экспортируется). Чуть меньше газа добывают США; далее с большим отрывом идут Канада, Великобритания, Алжир, Индонезия, Нидерланды, Иран, Норвегия и другие страны, причем более 70% газа добывается в развитых странах, а на страны - члены ОПЕК приходится лишь 15% его добычи. В отличие от нефтедобычи динамика добычи газа весь ХХ в. отличалась ростом и сейчас достигла 2720 млрд м 3 .

Урановые руды часто относят к топливным минеральным ресурсам, поскольку главное назначение урана - быть топливом для ядерных реакторов, устанавливаемых на энергетических установках. Из урановых руд получают урановый концентрат, который непосредственно используется в энергетике и производстве атомного оружия.

Достоверные запасы урановой руды, по оценке МАГАТЭ (Международное агентство по атомной энергии), составляют 2,4 млн т и сосредоточены в 44 государствах мира. Первое место принадлежит Австралии, второе - Казахстану, третье - Канаде, и на долю этих стран приходится почти половина мировых запасов урановых руд. Далее идут ЮАР, Бразилия, Намибия, США, Нигер, Россия, Узбекистан. В тоже время добыча руд и производство концентрата характеризуются несколько иной географией: добыча урановых руд ведется в 25 странах мира, но производство уранового концентрата сосредоточено в Канаде и Австралии - около 50%, со значительным отрывом идут Нигер, Намибия, Россия (около 7%) и другие страны, причем порядка 80% производства урана приходится на развитые страны.

Объемы производства уранового концентрата отличаются значительными колебаниями. Максимальные объемы были достигнуты в конце 70-х гг. - во время энергетического кризиса, но с середины 80-х гг. в течение 10 лет шло непрерывное падение объемов производства урана из-за замедления развития атомной энергетики (после Чернобыльской аварии) и окончания холодной войны. В последние годы добыча урана и производство уранового концентрата стабилизировались.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Сибирский государственный индустриальный университет»

Кафедра геотехнологии

Реферат

На тему: «Топливно-энергетические ресурсы мира»

Выполнил: студент гр. ЗГП-15У Солярский Т.И.

Проверил: к.т.н., доцент Володина А.В.

Новокузнецк 2015

План

Введение

1. Классификация топливно-энергетических ресурсов

2. Виды топливно-энергетических ресурсов

3. Виды возобновляемых энергоресурсов

3.1 Коллекторы солнечных батарей

3.2 Энергия ветра

3.3 Энергия воды

3.4 Биомасса

3.5 Биогаз

3.6 Геотермальная энергия

4. Невозобновляемые ресурсы

5. Ядерные источники энергии

6. Запасы топливно-энергетических ресурсов мира

6.2 Природные горючие газы

6.3 Каменные угли

6.4 Ядерная энергетика

Заключение

Список используемой литературы

Введение

В настоящее время вопрос экономного использования ресурсов является одним из ключевых как в деятельности отдельных предприятий, так и в функционировании всего государства в целом.

В широком смысле ресурсы можно определить как совокупность средств труда, которые предприятие использует для достижения собственных целей и удовлетворения потребностей. Одной из ключевых статей в структуре себестоимости являются материальные ресурсы.

Все многообразие материальных ресурсов, обозначенных в экономике народного хозяйства как предметы труда, условно можно подразделить на сырьё и материалы и топливо и энергию. В энергетическом секторе мирового хозяйства ведущую роль играют топливно-энергетические ресурсы - нефть, нефтепродукты, природный газ, каменный уголь, энергия (ядерная, гидроэнергия). Среди топливно-энергетических ресурсов особое место занимают нефть и природный газ. Эта группа товаров сохраняют роль лидеров среди прочих товарных групп в международной торговле, уступая только продукции машиностроения.

1. Классификация топливно-энергетических ресурсов

Топливно-энергетические ресурсы (ТЭР) - совокупность всех природных и преобразованных видов топлива и энергии, используемых в республике.

Топливно-энергетические ресурсы - совокупность природных и произведенных энергоносителей, запасенная энергия которых при существующем уровне развития техники и технологии доступна для использования в хозяйственной деятельности.

возобновляемый энергоресурс топливный биогаз

2. Виды топливно-энергетических ресурсов

Горючие (топливные), которые включают в себя энергию технологических процессов химической и термохимической переработки сырья, а именно горючие газы, твёрдые и жидкие топливные ресурсы, которые не пригодны для дальнейших технологических преобразований;

Тепловые - это тепло отходящих газов при сжигании топлива, тепло воды или воздуха, использованных для охлаждения технологических агрегатов и установок, теплоотходов производств;

Энергоресурсы избыточного давления (напора) - это энергия газов, жидкостей и сыпучих тел, покидающих технологические агрегаты с избыточным давлением (напором), которое необходимо снижать перед следующей ступенью использования этих жидкостей, газов, сыпучих тел или при выбросе их в атмосферу, водоёмы, ёмкости и другие приёмники. Энергетические ресурсы избыточного давления преобразуются в механическую энергию, которая либо непосредственно используется для привода механизмов и машин, либо преобразуется в электрическую энергию.

Топливно-энергетические ресурсы делятся на первичные и вторичные.

К первичным энергетическим ресурсам относят те ресурсы, которые люди получают непосредственно из природных источников для последующего преобразования в другие виды энергии, либо для непосредственного использования. Часто первичные ресурсы должны быть извлечены и подготовлены к дальнейшему использованию. Первичные ресурсы подразделяют на возобновляемые и невозобновляемые.

Вторичные энергетические ресурсы - энергетические ресурсы, получаемые в виде побочных продуктов основного производства или являющиеся такими продуктами.

3 . Виды возобновляемых энергоресурсов

Согласно Энергетической стратегии России до 2020 г. экономический обоснованный потенциал возобновляемых источников энергии составляет 270 млн т у.т. В то же время без учета большой гидроэнергетики использование ВЭР в России составляет 32 кг у.т. на 1 чел. в год, что в 10 раз меньше, чем в США и в 70 меньше, чем в Финляндии.

Латвия увеличила долю ВЭР в топливном балансе страны до 36%. Лучше из европейских стран только Швейцария, где этот показатель достиг 41%. Согласно предложению Еврокомиссии доля ВЭР к 2020 г. должна быть доведена до 20% у каждого члена ЕС. В электроэнергетике России этот показатель не превышает 1%, а по тепловой энергии составляет менее 5%.

Причины необходимости использования ВЭР:

*запасы других энергоресурсов не безграничны;

*при сжигании органического топлива оно превращается в отходы, по массе превышающие первичное топливо;

*при массовой добыче изменяются ландшафты (карьеры, перемещенный грунт, золоотвалы и т.д.), изменяется уровень грунтовых вод;

*добыча нефти и газа может приводить к необратимой деформации земной коры;

*негативное воздействие на растительный и животный мир;

*глобальное потепление.

Использование возобновляемых энергоресурсов даже без сокращения объемов потребления тепловой и электрической энергии позволит снизить потребление первичного топлива.

В повседневной жизни мы редко задумываемся о гигантских термических процессах внутри земли, о ее вращении, притяжении к другим планетам и звездам, о гигантских космических энергетических потоках, не поддающихся простому обывательскому осмыслению. В то же время даже привычных возобновляемых энергоресурсов, которые можно использовать с поверхности земли, хватит для развития человечества еще на много поколений.

В традиционном понимании к ВЭР относятся:

*энергия солнца;

*энергия ветра;

*энергия водных потоков;

*энергия морских приливов и волн;

*высокопотенциальная геотермальная энергия;

*низкопотенциальная энергия земли, воздуха и воды;

*биомасса;

*биогаз, свалочный и шахтный газ,

а также промышленные и бытовые отходы, образующиеся в результате деятельности главного загрязнителя планеты - человека.

3 .1 Коллекторы солнечных батарей

Ресурсы: солнечное излучение. Месторасположение: повсюду. Сфера использования: отопление, обеспечение горячей водой. Диапазон мощности: от 1,5 до 200 МВт.ч/в год, причем в долгосрочной перспективе верхнего предела мощности не существует. Расходы на производство тепловой энергии составляют сегодня: 20 - 50 пфеннигов/кВт.ч.

3 .2 Энергия ветра

Ресурсы: кинетическая энергия ветра. Месторасположение: по всему миру, главным образом, на побережье и вершинах гор. Сфера использования: производство электроэнергии. Диапазон мощности: от 0,05 кВт до 2,5 МВт на одну установку, ветряные фермы на 100 МВт и более. Расходы на производство электроэнергии составляют сегодня: 8 - 30 пфеннигов/кВт.ч.

Все ветряные мельницы работают по так называемому принципу сопротивления: оказывая своими крыльями сопротивление ветру, они могут преобразовывать максимум 15 процентов силы ветра. Современные ветроэнергетические установки работают по принципу подъемной силы, когда, как у самолета, используется подъемная сила встречного ветра.

3 .3 Энергия воды

Ресурсы: энергия воды при её движении и падении с высоты. Месторасположение: горы, реки. Сфера использования: производство электроэнергии, аккумулирование энергии. Диапазон мощности: гидроаккумулирующие гидроэлектростанции и ГЭС на не зарегулированном стоке до 5 000 МВт. Расходы на производство электроэнергии составляют сегодня: 5 - 10 пфеннигов/кВт.ч.

Гидроресурсы обеспечивают около 4% производимой в Германии электроэнергии. Сегодня в эксплуатации находится около 5 500 ГЭС общей мощностью 3 500 МВт.

3 .4 Биомасса

Ресурсы: древесина, зерновые культуры, сахаро- и крахмалосодержащие растения, масличные растения. Месторасположение: по всему миру при наличии биомассы. Сфера использования: производство тепла, комбинированная выработка тепла и электроэнергии, в виде топлива. Диапазон мощности: от 1 кВт до 30 МВт. Расходы: при выработке тепла 4 - 20 пфеннигов/кВт.ч; при получении тока 12 - 20 пфеннигов/кВт.ч.

Существует множество вариантов использования биомассы для выработки энергии. При этом первостепенное значение имеют, прежде всего, растения с высоким содержанием обменной энергии и древесина.

3 .5 Биогаз

Ресурсы: органические отходы. Месторасположение: по всему миру в зависимости от наличия отходов. Сфера использования: производство тепла, комбинированная выработка тепла и электроэнергии. Диапазон мощности: 20 кВт - 10 МВт. Расходы на сегодня: при выработке тепла 5 - 15 пфеннигов/кВт.ч; при получении электроэнергии 12 - 30 пфеннигов/кВт.ч.

Биогаз возникает при разложении органических веществ специальными метановыми бактериями.

3 .6 Геотермальная энергия

Ресурсы: тепло земных недр. Месторасположение: повсюду. Сфера использования: отопление и охлаждение, сезонное аккумулирование холода и тепла, технологическое тепло, выработка электроэнергии. Диапазон мощности: вблизи поверхности: 6 - 8 кВт; на углубленных пластах: до 30 МВт. Издержки производства: при выработке тепла 4 - 12 пфеннигов/кВт.ч; при получении тока 15 - 20 пфеннигов/кВт.ч.

Геотермальная энергия представляет собой тепло, пробивающееся из недр Земли на её поверхность. Пригодное для использования тепло зависит от глубины, на которой производится отбор геотермальной энергии. Через каждые 100 метров становится теплее на приблизительно 3° по Цельсию. Принцип использования тепла недр Земли довольно прост: под Землю закачивается вода, там она нагревается и затем подается наверх. Частично используются также природные термальные воды. Из-за высоких расходов на установку оборудования геотермальная энергия пока используется довольно редко.

Все вышеперечисленные виды энергии потенциально не принадлежат никому на территории страны. Поэтому их может использовать в личных целях любой гражданин или предприятие. На данном этапе развития общество еще не задумывается всерьез о применении всех этих видов энергии. Тем не менее, определенные разработки в этом направлении уже ведутся. Так, в настоящее время начато производство автомобилей с гибридными двигателями, которые имеют возможность работать на водороде. Это первый шаг к тому, чтобы начать перестраивать производственные циклы по получению энергии.

Особенность возобновляемых ресурсов в том, что они образуются вне зависимости от деятельности человека. Не зависимо от того, найдет ли человек применение всему этому потенциалу или нет, независимые источники энергии будут существовать и увеличиваться. Это преимущество подталкивает человечество к тому, чтобы начать масштабные разработки в плане применения этих видов энергии в хозяйственных и промышленных целях.

4 . Невозобновляемые ресурсы

Невозобновляемые это естественно образовавшиеся и накопившиеся в недрах планеты запасы веществ, способные при определенных условиях высвобождать заключенную в них энергию. Но образование новых веществ и накопление в них энергии происходит значительно медленнее, чем их использование. К ним относятся ископаемые виды топлива и продукты их переработки: каменный и бурый уголь, сланцы, торф, нефть, природный и попутный газ. Особыми видами невозобновляемых энергетических ресурсов являются расщепляющиеся (радиоактивные) вещества, находящиеся в недрах нашей планеты.

Топливно-энергетические ресурсы включают не только источники энергии, но и произведенные энергетические ресурсы: тепловую энергию (в первую очередь энергию горячей воды и водяного пара) и электрический ток.

Произведенные энергетические ресурсы получают, используя энергию первичных и вторичных энергоресурсов. Электрическая энергия впоследствии может быть снова преобразована в другие виды энергии.

5. Ядерные источники энергии

Из двух возможных природных источников ядерной энергетики - урана и тория, пока в практическом использовании находится лишь уран. В будущем возможно потребуется и торий

Руда с природным естественным ураном содержит, как упоминалось выше, три изотопа: 238U (99,282%), 235U (0,712%) и 234U (0,006%). Изотоп 234U практически не используется. Для обогащения представляет интерес только изотоп 235U. По этому изотопу проводят обогащение топлива для атомных станций с тепловыми (медленными) нейтронами (реакторы В.В.Э.Р., РБМК) и быстрыми нейтронами (реактор на быстрых нейтронах, например,

Белоярская АЭС). В основном, руды выщелачивают раствором серной, иногда азотной кислот или растворами соды с переводом урана в кислый или содовый раствор. Для извлечения и концентрирования урана из растворов и пульп, а также очистки от примесей применяют сорбцию на ионообменных смолах и экстракцию органическими растворителями (трибутилфосфат (ТБФ), алкилфосфорные кислоты, амины). Далее из растворов добавлением щелочи осаждают уранаты аммония или натрия, или гидроокись урана. Для получения соединений высокой степени чистоты технические продукты подвергаются аффинажным операциям очистки, с получением UO3 или U3O8. Эти окислы затем восстанавливаются водородом или аммиаком до UO2 и затем (путем обработки газообразным фтористым водородом при температурах порядка 500-6000C) переводится в тетрафторид урана (UF4). По другой технологии тетрафторид урана получают при осаждении кристаллогидрата UF4*nH2O плавиковой кислотой из растворов с последующим обезвоживанием продукта при 4500C в токе водорода. В промышленности основным способом получения урана из тетрафторида урана является его кальцийтермическое или магнийтермическое восстановление с выходом урана в виде слитков массой до 1,5 тонн (слитки рафинируются в вакуумных печах).

6. Запасы топливно-энергетических ресурсов мира

6.1 Нефть

Накопленная мировая добыча нефтей по состоянию на 01.01.10 г. оценивается в 140,0 млрд. т. При этом весьма важно, что в последние 5 лет (начиная с 2005 г.) она стала близкой к 4,0 млрд. т/год и растет незначительно, несмотря на высокий уровень мировых цен. При этом в накопленной добыче ведущую роль сыграли традиционные нефтедобывающие страны. На долю стран Ближнего и Среднего Востока приходится около 28%, Северной Америки - 24% и стран СНГ - 15%.

Доля 10 стран, достигших наибольшего уровня извлечения нефти из недр, сегодня, достигает 65% от общей мировой годовой ее добычи (>2,5 млрд. т/год). Эти же страны обладают и наибольшими разведанными доказанными запасами нефти. Однако приведенные ниже данные об их уровнях добычи и разведанных запасах свидетельствуют о широком диапазоне колебаний отношения - разведанные запасы/годовая добыча. Это отношение прямо не отражает обеспеченность ресурсами нефтедобывающей промышленности в годах. Его уменьшение чаще всего указывает на недостаточный размах геолого-разведочных работ, снижение качества нефтей, исчерпание ресурсов крупных месторождений и системные ошибки государственного управления ресурсным потенциалом недр.

добыча (млн.т./год)

разведанные запасы (млрд.т.)

Саудовская Аравия

Венесуэла

В целом разведанные доказанные мировые запасы, включая тяжелые нефти и битуминозные песчаники Атабаски (Канада), близки к 200,0 млрд. т. Кроме того, не менее 200 млрд. т имеется в предварительно оцененных известных месторождениях и прогнозных геологических ресурсах в нефтеносных зонах и бассейнах, включая шельфы Северного Ледовитого океана. При прогнозируемом максимальном росте уровней годовой нефтедобычи в 30-40-е годы XXI века - 4,2-4,5 млрд. т/год разведанные сегодня мировые запасы нефти и прогнозные ресурсы позволяют в конце текущего столетия возможность добычи нефти на уровне 3,5-2,5 млрд. т/год

6.2 Природные горючие газы

Накопленная мировая добыча природного горючего газа (свободного и попутного) оценивается в 90,0 трлн. м3. При этом важно подчеркнуть, что за последние 20 лет добыча природного газа возросла в 1,7 раза и превысила в 2009 году 3,0 трлн. м3. На Россию и США, при этом приходится почти 40% мировой его добычи. Разведанные доказанные запасы природного газа в мире составляют около 190 трлн. м3. Суммарные извлекаемые мировые ресурсы газа оцениваются в 460-480 трлн. м3, из которых более 45% приходится на Россию, 17-18% - на Ближний и Средний Восток, 6-7% на Африку и 4-5% на Северную Америку.

Намечаемое увеличение мировой добычи природного газа вполне обеспечено его ресурсами до конца текущего столетия. При этом надо иметь в виду, что прогнозные ресурсы горючего газа (свободного и попутного) существенно превышают ресурсы нефтей. В связи с успешным развитием газохимических технологий в ближайшие годы станет возможным и эффективным получение из газа (включая и попутный нефтяной газ) бензина и других топлив для транспортных средств по вполне приемлемым ценам. Решение этой проблемы поможет надежно обеспечить топливом транспортные и другие технические средства по крайней мере до конца текущего столетия.

При существенном снижении потребления газа для производства электроэнергии природный газ, несомненно, мог бы существенно усилить свою роль в обеспечении потребностей в топливе транспортных средств и в следующем веке.

6.3 Каменные угли

Накопленная добыча каменных и бурых углей для энергетики, к сожалению, может быть оценена лишь по косвенным данным, т.к. системный учет объемов их добычи был организован лишь в послевоенный период, во второй половине ХХ века. За последние 20 лет (с 1990 до 2010 гг.) в мире было добыто более 1,0 трлн. т каменных и бурых углей (без коксующихся).

Основные страны, добывающие угли, используемые в энергетике

>2,5 млрд. т./ год

115,0 млрд. т (разведанные)

>1,0 млрд. т/год

130,0 млрд. т (разведанные)

500 млн. т/год

5,0 млрд. т (разведанные)

40,0 млрд. т (общие)

Австралия

400 млн. т/год

>75,0 млрд. т (разведанные)

300 млн. т/год

>200 млрд. т (разведанные)

250 млн. т/год

30 млрд. т (разведанные)

Германия

200 млн. т/год

>20,0 млрд. т (общие)

В целом разведанные подтвержденные запасы углей в мире превышают 850,0 млрд. т, при общих разведанных запасах 3,6 трлн. т.

Несомненно, что запасы углей для обеспечения намечаемых уровней производства электроэнергии вполне достаточны не только на XXI век, но и на более продолжительное время. Как хорошо известно, развитие электроэнергетики, базирующейся на использовании углей, сдерживается высоким уровнем выбросов парниковых газов, сильным загрязнением окружающей среды, а также высокими расходами на добычу и транспорт углей. Радикальные научно-технические решения, снимающие эти проблемы, даже при успешном вовлечении альтернативных источников производства электроэнергии не снимут в повестки дня быстрый рост доли углей в балансе природных энергетических источников в XXI веке.

6.4 Ядерная энергетика

Суммарные ресурсы урана, использованные в атомной энергетике, не могут оцениваться по количеству его добычи из недр. Как известно, некоторая его часть была использована и для других целей, в частности для производства оружия. Однако основная часть добытого урана сегодня находится в хранилищах облученного ядерного топлива (ОЯТ), т.к. КПД использования энергии заключенной в уране, к сожалению не превышает 1%. В мире пока используются в основном легководные реакторы на тепловых нейтронах в открытом топливном цикле, без использования технологий рециклинга ОЯТ.

Новые технологии современного этапа развития атомной энергетики именуются ренессансными и связаны с ее переводом на замкнутый топливный цикл с использованием реакторов на быстрых нейтронах. Однако этот процесс происходит на фоне ускоренного введения в действие легководных реакторов. По данным МАГАТЭ в конце 2010 г. находилось в эксплуатации 441 энергетический реактор, строилось 60 новых блоков. Уже сегодня Франция, Литва Словакия, Бельгия, Швеция и Украина на АЭС производят более половины электроэнергии. К 2030 г. установочная мощность АЭС может составить 1000 ГВт при 370 ГВт в 2010 г.

Мировое производство урана, начатое в середине 40-х годов прошлого столетия не было стабильным. До 1957 г. оно быстро развивалось и достигло 48,0 тыс. т в год. Затем к 1964 г. упало до 30,0 тыс. т/год. С середины 60-х годов динамично росло и к началу 80-х достигло 68,0 тыс. т/год. Затем в начале 1990-х оно снизилось до 30,0 тыс. т/год и лишь последнее 10-летие стало медленно нарастать до 40,0 тыс. т/год.

Как видно на рисунке хорошо проявлены два «пика» максимального взлета производства первичного урана.

Динамика производства урана и его использования в атомной энергетике (1945-2010 гг.)

Первый пик подъема его добычи связан с гонкой ядерных вооружений, а второй - с «дочернобыльским этапом» развития атомной энергетики. Последствия этой технологической катастрофы в энергетике были преодолены лишь к началу нового XXI века. Именно последние 10 лет происходит заметный прогресс в решении многих проблем дальнейшего развития атомной энергетики.

Ведущее место в добыче урана до 1991 г. занимал СССР. После его распада в России осталось лишь одно горнодобывающее предприятие. Добыча урана в нашей стране, начиная с 1992 г., снизилась до 2,5-3,5 тыс. т в год, что составляет 7-8% от мирового уровня. До 2005 г. половину мирового уранового концентрата производили Канада и Австралия. Начиная с 2008 г. в тройку лидеров вошел Казахстан и в 2010 г., с уровнем добычи урана, превысившим 10,0 тыс. т/год, вышел на первое место в мире. Добыча урана в этой стране прогрессивными методами подземного выщелачивания («ПВ»), разработанными и освоенными еще в СССР, растет быстрыми темпами и к 2015 г. планируется на уровне 15,0 тыс. т/год. Разведанные здесь подтвержденные запасы по себестоимости добычи урана <80 долларов США за 1 кг урана, составляют около 350,0 тыс. т, что обеспечивает дальнейшее наращивание его производства.

Мировые общие запасы урана сегодня достигают 5,0 млн. т. Суммарное производство урана за все время существования атомной промышленности превысило 2,5 млн. т. В реакторах использовано 1,9 млн. т. В складских запасах имеется не менее 600 тыс. т урана. Почти 500,0 тыс. т его имеется в хвостах изотопного обогащения. Значительная доля урана сосредоточена в хранилищах ОЯТ, хотя часть его переработана. При вводе в действие усовершенствованных тепловых реакторов, организации рециклинга ОЯТ, использовании МОХ-топлива и сбалансированном развитии атомной энергетики на быстрых нейтронах к 2050 г. возможно увеличить ядерные мощности до 2000 ГВт за счет имеющихся суммарных установленных и прогнозных ресурсов природного урана.

Заключение

Развиваясь, человечество начинает использовать все новые виды ресурсов (атомную и геотермальную энергию, солнечную, гидроэнергию приливов и отливов, ветряную и другие нетрадиционные источники). Однако, главную роль в обеспечении энергией всех отраслей Экономики сегодня играют топливные ресурсы. Это четко отражает «приходная часть» топливно-энергетического баланса. Топливно-энергетический комплекс тесно связан со всей промышленностью страны. На его развитие расходуется более 20% денежных средств. На ТЭК приходиться 30% основных фондов и 30% стоимости промышленной продукции России. Он использует 10% продукции машиностроительного комплекса, 12% продукции металлургии, потребляет 2/3 труб в стране, дает больше половины экспорта РФ и Значительное количество сырья для химической промышленности. Его доля в перевозках составляют 1/3 всех грузов по железным дорогам, половину перевозок морского транспорта и всю транспортировку по трубопроводам.

Топливно-энергетический комплекс имеет большую районо образовательную функцию. С ним напрямую связано благосостояние всех граждан России, такие проблемы, как безработица и инфляция. Наибольшее значение в топливной промышленности страны принадлежит трем отраслям: нефтяной, газовой и угольной, из которых особо выделяется нефтяная.

Роль топливно-энергетических ресурсов состоит в том, что они необходимы для производственного цикла и выпуска продукции предприятия. Энергоресурсы напрямую влияют на себестоимость и конкурентоспособность выпускаемой и реализованной продукции.

Список используемой литературы

1. Арнов Р.И. Состав и структура топливно-энергетических ресурсов промышленного предприятия. - М: Информ, 2007.

3. Зайцев Н.Л. Экономика промышленного предприятия. - М.: ИНФРА-М, 2005.

4. Петронев С.И. Использование топливно-энергетических ресурсов в промышленности.- СПб: Пресс, 2008

Размещено на Allbest.ru

...

Подобные документы

    Характеристика видов и классификации топливно-энергетических ресурсов или совокупности всех природных и преобразованных видов топлива и энергии. Вторичные топливно-энергетические ресурсы - горючие, тепловые и энергоресурсы избыточного давления (напора).

    контрольная работа , добавлен 31.01.2015

    Количественная характеристика и особенности топливно-энергетических ресурсов, их классификация. Мировые запасы, современное состояние, размещение и потребление энергетических ресурсов в мире и в России. Нетрадиционные и возобновляемые источники энергии.

    презентация , добавлен 31.01.2015

    Рациональное использование топливно-энергетических ресурсов. Основные причины большого потребления топливно-энергетических ресурсов на предприятиях пищевой промышленности, пути сбережения тепловой энергии. Использование вторичных энергоресурсов.

    реферат , добавлен 11.02.2013

    Основные способы организации энергосберегающих технологий. Сущность регенерации энергии. Утилизация вторичных (побочных) энергоресурсов. Системы испарительного охлаждения элементов высокотемпературных печей. Подогрев воды низкотемпературными газами.

    доклад , добавлен 26.10.2013

    Политика России в сфере энергообеспечения и энергосбережения. Использование местных и альтернативных видов топливно-энергетических ресурсов. Энергетические ресурсы России: топливные ресурсы, энергия рек, ядерная энергия. Мероприятия по энергосбережению.

    реферат , добавлен 19.12.2009

    Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат , добавлен 18.10.2013

    Анализ энергосбережения (экономии энергии) как правовых, производственных, технических и экономических мер, направленных на эффективное использование топливно-энергетических ресурсов и на внедрение в хозяйственный оборот возобновляемых источников энергии.

    реферат , добавлен 24.10.2011

    Анализ состояния топливно–энергетического и нефтегазового комплекса России. Потенциал топливно-энергетических ресурсов и доля углеводородного сырья в структуре топливно-энергетического баланса страны. Динамика добычи и потребления углеводородного сырья.

    курсовая работа , добавлен 25.03.2012

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

Проблем устойчивого развития) весной 2011 года.

Надеюсь Николай Павлович не будет против того что бы эта информация была доступна общественности в качестве авторитетного, научного мнения, ибо в сети, в СМИ высказывается масса необоснованных (а порой и просто лживых) "размышлений" всякого рода "аналитиков" по означенной проблематике, вводящих общество в заблуждение и питающих невежество.
Изначально материал един, на две части пришлось "разбить" потому что ЖЖ не позволил разместить такой объём, это единственное что я изменил в авторской работе, за что прошу тов. Лаверова великодушно простить меня.
======================================== =====================================
Топливно-энергетические ресурсы: состояние, динамика освоения, обеспеченность
=============
Часть 1: МИР
=============

1. ВВЕДЕНИЕ.

Ресурсное обеспечение энергетического сектора современной экономики — одна из ключевых глобальных проблем. Материалы, положенные в основу статьи, разнообразны и неоднозначны. Они содержат противоречивые оценки имеющихся в мире и России топливно-энергетических ресурсов. Соответственно, во многом, субъективными являются и прогнозы их восполнения как в ближайшем будущем, так и на дальнюю перспективу, например, до 2050 г. и в целом на XXI в.

В последние годы почти еженедельно в мире и в нашей стране проводятся различные энергетические форумы, конференции, семинары, "круглые столы", часто весьма политизированные или посвященные частным проблемам. В многочисленных журнальных статьях, научных трудах конференций и особенно в газетных публикациях, на радио и телевидении звучат пугающие общество предостережения о скором исчерпании привычных природных топливно-энергетических ресурсов. Одновременно с неоправданной оптимистичностью предсказывается возможность их быстрой замены новыми альтернативными источниками энергии.

В статье использованы официальные государственные документы, данные статистической отчетности, опубликованные материалы Министерства природных ресурсов и Минэнерго России, отечественные обзоры «Запасы и добыча важнейших полезных ископаемых», доклады иностранных геологических служб, отчеты горнодобывающих компаний. Использованы сведения наиболее авторитетных аналитических, информационных и экспертных служб и, разумеется - авторские расчеты и оценки, вытекающие из исследований ученых Российской академии наук и международных организаций.


2. ПРИРОДНЫЕ ИСТОЧНИКИ ЭНЕРГИИ.

Существует много схем подразделения природных источников энергии, в основу которых положены различные принципы.

Рис. 1. Основные природные источники энергии

На рис.1 приведена одна из схем, где выделяются две основные группы: невозобновляемые и возобновляемые, альтернативные источники энергии. В свою очередь, невозобновляемые ресурсы представлены двумя типами - традиционные и нетрадиционные. К первому типу относятся жидкие и газообразные углеводороды, угли и высококачественные урановые руды. Среди нетрадиционных природных источников энергии до некоторой степени условно выделены два вида: пригодные к освоению в XXI в. и перспективные источники энергии, широкое освоение которых возможно лишь в следующем веке

3. О КЛАССИФИКАЦИИ ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ ПО СТЕПЕНИ ИХ
ПОДГОТОВКИ К ОСВОЕНИЮ.

Представляется необходимым, хотя бы кратко, рассмотреть существующие сегодня классификации природных энергетических ресурсов по степени их подготовки к освоению. Именно на этой основе ведется их учет, комплектуются статистические обзоры, в некоторых странах издается ежегодный Государственный баланс запасов.
Наиболее разработана система учета запасов углеводородного сырья и урана. В системе их учета используется определенная понятийная база. Действуют различные формы учета, (государственные=федеральные, региональные, муниципальные, частных фирм и международные). Кроме государственных балансов запасов, издаются ежегодные обзоры состояния, отчеты ведущих фирм, в которых в основные категории принятых понятий - «ресурсы», «запасы» и др. включены различные по качеству исходные данные.

В нашей стране принята утвержденная в 2005 году Министерством природных ресурсов Российской Федерации «Классификация запасов и прогнозных ресурсов нефтей и горючих газов». Уточненную классификацию планировалось ввести в действие с 01.01.09 года. Однако, в связи с большим количеством замечаний со стороны недропользователей срок ее ввода перенесен на 3 года. (снова пресловутый 2012 год)

Ведется системная работа по устранению недостатков действующей классификации 2005 года, направленная на сохранение всего полезного в действовавших ранее классификациях, в том числе сохранение двух групп - балансовых и забалансовых запасов. Рекомендуется учитывать возможности гармонизации проекта с рамочной классификацией ООН (ЕЭК ООН). Многие специалисты предлагают включение экономических критериев в геологическую часть классификации, усиление ее адаптации к рыночной экономике и др.

Уместно напомнить, что недавно исполнилось 100 лет первой весьма разумной классификации запасов полезных ископаемых по степени их изученности, предложенной в 1909 г. Х. Гувером (впоследствии Президентом США), рекомендовавшим разделять запасы на три категории: доказанные (proved), вероятные (probable) и перспективные (prospective). Такой подход долго использовался не только в США, но и многих других странах. Позднее вместо категории перспективные запасы (prospective) была принята категория «возможные» (possible). К доказанным относились детально разведанные запасы, вскрытые буровыми скважинами, оконтуренные на основе опробования их качества и технологии освоения. К «вероятным» - не в полной мере оконтуренные, вскрытые лишь отдельными буровыми скважинами, технологически недостаточно изученные. К «возможным» - запасы участков нефтеносных пластов, примыкающих к промышленным, с доказанными и вероятными запасами.
Геологической службой и Горным бюро США в 1980 г. была введена новая классификация. В ней впервые по степени изученности выделены две группы: разведанные запасы и предварительно оцененные ресурсы полезных ископаемых. В группе запасов высокой степени изученности и подготовленности к освоению выделены: «измеренные» (measured) и «исчисленные» (indicated), а также «предполагаемые» (inferred). В категорию запасов по этим категориям изученности включены также и те, которые могли быть в обозримой перспективе реально переведены в группу экономически целесообразных для освоения. Для них предложено понятие - «возможные запасы» (possible reserves).

Для запасов урана предложена «своя» классификация, в которой стержневым критерием является экономическая оценка разведанных запасов (цена за 1 кг U), включая его добычу. Одновременно сохраняется группа резервных и прогнозных геологических ресурсов урана, учитывающая их возможную себестоимость извлечения из недр.

Из этого краткого обзора существующих подходов видно, что «статистика» минерально-сырьевых ресурсов для энергетики, оценка их движения по «лестнице освоения», пока не могут рассматриваться в качестве возможной математической базы для построения моделей и определения жестких плановых годовых показателей обеспеченности энергетики природным сырьем на средне и долгосрочную перспективу. Тем не менее, многолетний опыт такого анализа накопленный в развитых странах, имеющих возможность привлекать к этой работе высококвалифицированных экспертов-специалистов разного профиля, свидетельствует о возможности получения прогнозных результатов необходимого качества для планирования не только краткосрочных (1-3 года), но также среднесрочных (5-10 лет) и долгосрочных (до 50 лет) уровней возможного обеспечения сырьем развивающейся энергетики.

4. МИРОВЫЕ ПОТЕНЦИАЛЬНЫЕ ГЕОЛОГИЧЕСКИЕ РЕСУРСЫ.

Обычно определяются на основе фундаментальных геологических исследований, учитывающих накопленный опыт комплексного изучения территорий и морских акваторий, нефтегазоносных и угольных бассейнов, огромный материал геологоразведочных и горных работ.
Прогнозная оценка геологических ресурсов углеводородов приведена на рис. 2.

Рис. 2. Геологические ресурсы углеводородов

По нашей оценке традиционные ресурсы углеводородов, тяжёлых нефтей и битумов, а также газа и нефти в низкопроницаемых коллекторах, составляют 3.5x1012 т нефтяного эквивалента (т н.э.). Среди нетрадиционных особенно велики геологические ресурсы газогидратов суши и акваторий и водорастворённые газы континентов.

5. МИРОВЫЕ ЗАПАСЫ И ДИНАМИКА ИХ ОСВОЕНИЯ.

5.1 Нефть.

Накопленная мировая добыча нефтей по состоянию на 01.01.10 г. оценивается в 140,0 млрд. т. При этом весьма важно, что в последние 5 лет (начиная с 2005 г.) она стала близкой к 4,0 млрд. т/год и растет незначительно, несмотря на высокий уровень мировых цен. При этом в накопленной добыче ведущую роль сыграли традиционные нефтедобывающие страны. На долю стран Ближнего и Среднего Востока приходится около 28%, Северной Америки - 24% и стран СНГ - 15%.
Доля 10 стран, достигших наибольшего уровня извлечения нефти из недр, сегодня, достигает 65% от общей мировой годовой ее добычи (>2,5 млрд. т/год). Эти же страны обладают и наибольшими разведанными доказанными (proved) запасами нефти. Однако приведенные ниже данные об их уровнях добычи и разведанных запасах свидетельствуют о широком диапазоне колебаний отношения - разведанные запасы/годовая добыча. Это отношение прямо не отражает обеспеченность ресурсами нефтедобывающей промышленности в годах. Его уменьшение чаще всего указывает на недостаточный размах геолого-разведочных работ, снижение качества нефтей, исчерпание ресурсов крупных месторождений и системные ошибки государственного управления ресурсным потенциалом недр .

В целом разведанные доказанные мировые запасы, включая тяжелые нефти и битуминозные песчаники Атабаски (Канада), близки к 200,0 млрд. т . Кроме того, не менее 200 млрд. т имеется в предварительно оцененных известных месторождениях и прогнозных геологических ресурсах в нефтеносных зонах и бассейнах, включая шельфы Северного Ледовитого океана . При прогнозируемом максимальном росте уровней годовой нефтедобычи в 30-40-е годы XXI века - 4,2-4,5 млрд. т/год разведанные сегодня мировые запасы нефти и прогнозные ресурсы позволяют в конце текущего столетия возможность добычи нефти на уровне 3,5-2,5 млрд. т/год

5.2 Природные горючие газы.

Накопленная мировая добыча природного горючего газа (свободного и попутного) оценивается в 90,0 трлн. м3. При этом важно подчеркнуть, что за последние 20 лет добыча природного газа возросла в 1,7 раза и превысила в 2009 году 3,0 трлн. м3. На Россию и США, при этом приходится почти 40% мировой его добычи. Разведанные доказанные запасы природного газа в мире составляют около 190 трлн. м3. Суммарные извлекаемые мировые ресурсы газа оцениваются в 460-480 трлн. м3, из которых более 45% приходится на Россию, 17-18% - на Ближний и Средний Восток, 6-7% на Африку и 4-5% на Северную Америку .
Намечаемое увеличение мировой добычи природного газа вполне обеспечено его ресурсами до конца текущего столетия. При этом надо иметь в виду, что прогнозные ресурсы горючего газа (свободного и попутного) существенно превышают ресурсы нефтей. В связи с успешным развитием газохимических технологий в ближайшие годы станет возможным и эффективным получение из газа (включая и попутный нефтяной газ) бензина и других топлив для транспортных средств по вполне приемлемым ценам. Решение этой проблемы поможет надежно обеспечить топливом транспортные и другие технические средства по крайней мере до конца текущего столетия.
При существенном снижении потребления газа для производства электроэнергии природный газ, несомненно, мог бы существенно усилить свою роль в обеспечении потребностей в топливе транспортных средств и в следующем веке.

5.3 Каменные угли.

Накопленная добыча каменных и бурых углей для энергетики, к сожалению, может быть оценена лишь по косвенным данным, т.к. системный учет объемов их добычи был организован лишь в послевоенный период, во второй половине ХХ века. За последние 20 лет (с 1990 до 2010 гг.) в мире было добыто более 1,0 трлн. т каменных и бурых углей (без коксующихся).

Основными странами, добывающими сегодня угли, используемые в энергетике, являются:

страна добыча запасы
Китай >2,5 млрд. т./ год 115,0 млрд. т (разведанные)
США >1,0 млрд. т/год 130,0 млрд. т (разведанные)
Индия 500 млн. т/год 5,0 млрд. т (разведанные)
40,0 млрд. т (общие)
Австралия 400 млн. т/год >75,0 млрд. т (разведанные)
Россия 300 млн. т/год >200 млрд. т (разведанные)
ЮАР 250 млн. т/год 30 млрд. т (разведанные)
Германия 200 млн. т/год >20,0 млрд. т (общие)

В целом разведанные подтвержденные запасы углей в мире превышают 850,0 млрд. т, при общих разведанных запасах 3,6 трлн. т.
Несомненно, что запасы углей для обеспечения намечаемых уровней производства электроэнергии вполне достаточны не только на XXI век, но и на более продолжительное время. Как хорошо известно, развитие электроэнергетики, базирующейся на использовании углей, сдерживается высоким уровнем выбросов парниковых газов, сильным загрязнением окружающей среды, а также высокими расходами на добычу и транспорт углей. Радикальные научно-технические решения, снимающие эти проблемы, даже при успешном вовлечении альтернативных источников производства электроэнергии не снимут в повестки дня быстрый рост доли углей в балансе природных энергетических источников в XXI веке.

5.4 Ресурсы ядерной энергетики.

Из двух возможных природных источников ядерной энергетики - урана и тория, пока в практическом использовании находится лишь уран. В будущем возможно потребуется и торий
Суммарные ресурсы урана, использованные в атомной энергетике, не могут оцениваться по количеству его добычи из недр. Как известно, некоторая его часть была использована и для других целей, в частности для производства оружия. Однако основная часть добытого урана сегодня находится в хранилищах облученного ядерного топлива (ОЯТ), т.к. КПД использования энергии заключенной в уране, к сожалению не превышает 1%. В мире пока используются в основном легководные реакторы на тепловых нейтронах в открытом топливном цикле, без использования технологий рециклинга ОЯТ.
Новые технологии современного этапа развития атомной энергетики именуются ренессансными и связаны с ее переводом на замкнутый топливный цикл с использованием реакторов на быстрых нейтронах. Однако этот процесс происходит на фоне ускоренного введения в действие легководных реакторов. По данным МАГАТЭ в конце 2010 г. находилось в эксплуатации 441 энергетический реактор, строилось 60 новых блоков. Уже сегодня Франция, Литва Словакия, Бельгия, Швеция и Украина на АЭС производят более половины электроэнергии. К 2030 г. установочная мощность АЭС может составить 1000 ГВт при 370 ГВт в 2010 г.
Мировое производство урана, начатое в середине 40-х годов прошлого столетия не было стабильным. До 1957 г. оно быстро развивалось и достигло 48,0 тыс. т в год. Затем к 1964 г. упало до 30,0 тыс. т/год. С середины 60-х годов динамично росло и к началу 80-х достигло 68,0 тыс. т/год. Затем в начале 1990-х оно снизилось до 30,0 тыс. т/год и лишь последнее 10-летие стало медленно нарастать до 40,0 тыс. т/год.
Как видно на рис. 3 хорошо проявлены два «пика» максимального взлета производства первичного урана.


Рис. 3. Динамика производства урана и его использования в атомной энергетике (1945-2010 гг.)

Первый пик подъема его добычи связан с гонкой ядерных вооружений, а второй - с «дочернобыльским этапом» развития атомной энергетики. Последствия этой технологической катастрофы в энергетике были преодолены лишь к началу нового XXI века. Именно последние 10 лет происходит заметный прогресс в решении многих проблем дальнейшего развития атомной энергетики.
Ведущее место в добыче урана до 1991 г. занимал СССР. После его распада в России осталось лишь одно горнодобывающее предприятие. Добыча урана в нашей стране, начиная с 1992 г., снизилась до 2,5-3,5 тыс. т в год, что составляет 7-8% от мирового уровня. До 2005 г. половину мирового уранового концентрата производили Канада и Австралия. Начиная с 2008 г. в тройку лидеров вошел Казахстан и в 2010 г., с уровнем добычи урана, превысившим 10,0 тыс. т/год, вышел на первое место в мире. Добыча урана в этой стране прогрессивными методами подземного выщелачивания («ПВ»), разработанными и освоенными еще в СССР, растет быстрыми темпами и к 2015 г. планируется на уровне 15,0 тыс. т/год. Разведанные здесь подтвержденные запасы по себестоимости добычи урана <80 долларов США за 1 кг урана, составляют около 350,0 тыс. т , что обеспечивает дальнейшее наращивание его производства.
Мировые общие запасы урана сегодня достигают 5,0 млн. т. Суммарное производство урана за все время существования атомной промышленности превысило 2,5 млн. т. В реакторах использовано 1,9 млн. т. В складских запасах имеется не менее 600 тыс. т урана. Почти 500,0 тыс. т его имеется в хвостах изотопного обогащения. Значительная доля урана сосредоточена в хранилищах ОЯТ, хотя часть его переработана. При вводе в действие усовершенствованных тепловых реакторов, организации рециклинга ОЯТ, использовании МОХ-топлива и сбалансированном развитии атомной энергетики на быстрых нейтронах к 2050 г. возможно увеличить ядерные мощности до 2000 ГВт за счет имеющихся суммарных установленных и прогнозных ресурсов природного урана .

6. О СТРУКТУРЕ БАЛАНСА ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ.

Возрастающее потребление невозобновляемых природных энергетических ресурсов определяется стремительным ростом населения Земли и его потребностей. В ХХ в. потребление коммерческих энергетических ресурсов увеличилось в 15 раз. С 1975 по 2005 г. оно превысило объем их использования за весь предшествующий период развития человеческой цивилизации и достигло в 2005 г. 15 млрд. т условного топлива (т.у.т.) в год. Произошло существенное расширение источников потребляемой энергии и появились новые, изменившие структуру баланса энергетических ресурсов.
Это хорошо видно на рис. 4 и не нуждается в комментариях.

Рис. 4. Динамика распределения потребляемой в мире энергии по ее источникам в ХХ веке (млн. т у.т.)

В суммарном энергопотреблении к началу XXI в. в мире доля нефти достигла 40%, углей - 27%, природного газа - 23%. В то же время доля атомной энергии, гидроэнергии, солнечной и ветровой составила всего лишь 10%. Если до 70-х годов в энергопотреблении опережающими темпами росла нефтяная составляющая, то в 80-х годах, после преодоления нефтяного кризиса, в большинстве индустриально развитых стран произошло заметное снижение доли нефти, увеличилась доля углей, природного газа и атомной энергии. Наличие ресурсов углеводородов и уровень технологического прогресса определили весьма «пеструю» картину структуры потребления энергетических ресурсов в мире.
На рис. 5 хорошо видно это различие на примере России, Китая, Южной Кореи.

Рис. 5. Структура потребления первичных энергетических ресурсов

Страны, взявшие курс на развитие атомной энергетики - Франция, Япония и ряд других (рис. 6) за 25 лет коренным образом изменили энергетический баланс своей экономики и достигли выдающихся успехов в конверсии углеводородной энергетики, существенно подняли роль атомной энергетики, решили важные экологические проблемы. (примечание: материал готовился в начале года, фукусима была ещё цела )

Рис. 6. Структура использования энергетических ресурсов в Японии и во Франции

Потребление первичной энергии распределено по странам и регионам крайне неравномерно. На рис. 7 приведены уровни ее потребления в 20 странах мира в 2005 г. Видно, что США, Китай и Россия - являются основными потребителями энергоресурсов: на них приходится более 40%.

Рис. 7. Потребление первичной энергии в 20 странах - крупнейших потребителях в 2005 г. (млн. т у.т.)

В изменении структуры потребляемых энергоресурсов проявились важные закономерности, которые связаны с научно-техническим прогрессом и в целом с развитием экономик стран. Характерно, что при увеличении количества существенных источников энергии за 100 лет с двух до шести, ни один из них не утратил своего значения к началу XXI века. Они постепенно перешли в категорию традиционных, имеющих в балансе разную долю. Современные прогностические споры чаще всего и сводятся к определению доли каждого из них в будущем. По прогнозу IEA на период до 2030 г. в 2009 г. (рис. 8)

Рис. 8. Мировое производство электроэнергии по источникам первичной энергии

в мировом производстве электроэнергии ведущее место по-прежнему будут занимать уголь, природный газ и гидроэнергетика. Атомная энергетика сможет выйти на третье место не раньше 2050 г. .

География мировых топливно-энергетических ресурсов. Топливно-энергетический комплекс России. Нефтедобывающая и нефтеперерабатывающая, газовая, угольная промышленность. Размещение. Формирование и направление грузопотоков. Электроэнергетика.

Мировые топливно-энергетические ресурсы

Суммарные общегеологические (прогнозные) запасы минерального топлива нашей планеты превышают 12,5 трлн. т, из них более 60% приходится на уголь, около 12% на нефть и 15% на природный газ, остальное на сланцы, торф и прочие виды топлива.

Угольные ресурсы , занимающие лидирующее положение в запасах минерального топлива (разведанные запасы каменного и бурого угля превышают 5 трлн т, а разрабатываемые составляют около 1,8 трлн т), встречаются на земном шаре почти повсеместно. Углем хорошо обеспечены Европа и Азия, Северная Америка, Африка и Австралия. Самый бедный углем континент Южная Америка. Угольные ресурсы разведаны почти в 100 странах мира. Примерно 80% общих геологических запасов угля приходится только на три страны Россию, США, Китай. Далее в порядке убывания запасов следуют Австралия, Канада, Германия, Великобритания, Польша, ЮАР.

Существенное значение имеет качественный состав углей (бурый уголь, коксующиеся угли, антрацит), в частности, доля коксующихся углей, применяемых в черной металлургии. Наиболее велика их доля в запасах угля Австралии, Германии, России, Украины, США, Индии и Китая.

Эффективность добычи угля во многом зависит от условий его залегания . Выгодной является разработка открытым (карьерным) способом. Она практикуется в США (Западный бассейн), России (Канско-Ачинский бассейн и др.), Казахстане (Экибастузский бассейн), Австралии, ЮАР.

Россия по разрабатываемым запасам угля превосходит все страны мира, а по разведанным уступает США и Китаю. 90% общих геологических запасов России приходится на Сибирь и Дальний Восток, где своими размерами выделяются Тунгусский (содержит около 2,3 трлн т угля и является крупнейшим в мире), Таймырский, Канско-Ачинский, Кузнецкий, Иркутско-Черемховский, Минусинский, Ленский, Южно-Якутский, Буреинский, Сахалинский бассейны. Несравненно меньшими запасами располагают бассейны, расположенные на севере (Печорский), в центре (Подмосковный), на юге (восточное крыло Донецкого угольного бассейна в Ростовской области) на Урале (Кизеловский, Южно-Уральский, Челябинский и др.)

Разнообразен качественный состав углей. Есть и высококачественные каменные угли (99 млрд т, или 49% разведанных запасов), в том числе антрациты, и коксующиеся и бурые угли, отличающиеся низким качеством. Ресурсами коксующегося угля располагают Печорский, Кузнецкий, Донецкий и Южно-Якутский бассейны. Наиболее глубоко залегают угли в европейской части страны. В бассейнах восточных районов (Канско-Ачинском, Кузнецком, Южно-Якутском и др.) имеется возможность добычи угля открытым (карьерным) способом. К положительным свойствам бассейнов восточных районов относится также большая мощность угольного пласта (в среднем от 40 м до 100 м).


Из стран СНГ , помимо России, богаты углем Украина (Донецкий, Львовско-Волынский бассейны и др.) и Казахстан (Карагандинский, Экибастузский, Убаганский бассейны и др.) Слабее обеспечены Грузия (Ткварчели, Ткибули), Узбекистан (Ангрен), Киргизия.

В целом обеспеченность мирового хозяйства ресурсами угля довольно велика (значительно больше, чем другими видами топлива). При современном уровне мировой добычи угля (4,5 млрд т в год) разведанных запасов может хватить более чем на 1000 лет.

Разведанные запасы нефти оцениваются в 270-300 млрд т, разрабатываемые 140 млрд т. В отличие от угольных нефтяные ресурсы размещены на земном шаре крайне неравномерно. Более половины разведанных запасов нефти приурочено к морским месторождениям, зоне континентального шельфа, побережьям морей. Крупные скопления нефти выявлены у берегов Аляски, в Мексиканском заливе, в приморских районах северной части Южной Америки (впадина Маракайбо), в Северном море (особенно в Британском и Норвежском секторах), в Баренцевом, Беринговом и Каспийском морях, у западных берегов Африки (Гвинейский залив), в Персидском заливе, у островов Юго-Восточной Азии и в др. местах.

Среди стран мира особенно богаты нефтью страны Ближнего и Среднего Востока (Саудовская Аравия, Ирак, ОАЭ, Кувейт, Иран, Катар, Бахрейн и др.), Латинской Америки (Мексика, Венесуэла, Эквадор и др.). Африки (Алжир, Ливия, Нигерия, Габон), Юго-Восточной Азии (Индонезия, Бруней и др.) Они сосредоточивают более 4/5 мировых запасов нефти. Кроме этих стран крупными запасами нефти располагают Россия, США, Китай, Великобритания, Канада, Румыния и некоторые другие.

На Россию приходится примерно 4,8-5% (13-14,5 млрд т) мировых разведанных запасов нефти. По этому показателю она уступает Саудовской Аравии (25,4%), Ираку (11%), Кувейту (9,3%), Ирану (9,1%), Венесуэле (6,8%), но превосходит США (2,4%), Китай (2,4%) и др. Около 70% разведанных запасов нефти России находится в Томской и Тюменской областях Западной Сибири, где эксплуатируется крупнейшее в мире Самотлорское месторождение, а из других выделяются Сургутское, Нижневартовское, Усть-Балыкское, Мегионское, Федоровское, Шаимское, Соснинско-Советское и Красноленинское. Остальную часть разведанных запасов нефти России разделяют между собой Поволжье (Альметьевское, Ромашкинское, Бугурусланское в Республике Татарстан, Мухановское в Самарской области и др.), Северный район (Усинское. Ухтинское, Возейское, Южно-Шапкинское, Южно-Хылчуюкское и др. месторождения), Северный Кавказ (Дагестанская и Грозненская нефтегазоносные провинции), Восточная Сибирь (Марковское месторождение) и Дальний Восток (Оха на о, Сахалин).

Из стран СНГ крупные источники нефти находятся в Азербайджане (месторождения Апшеронского полуострова и шельфа Каспия – Нефтяные Камни, остров Жилой и др.), Казахстане (Урало-Эмбинский бассейн; месторождения Узень и Жетыбай на полуострове Мангышлак; Тенгизское в Гурьевской области; полуостров Бузачи и др.), в Туркмении (Челекен, Небит-Даг), Узбекистане (Ферганская долина), Киргизии (Нефтеабад, Андижан и др.). Менее значительными месторождениями располагают Украина (Долинское, Бориславское, Радченковское, Зачепиловское) и Белоруссия (Речицкое в Припятской впадине).

Обеспеченность разведанными запасами нефти при современном уровне добычи (около 3 млрд т в год) по миру в целом составляет 45 лет. В США этот показатель едва превышает 10 лет, в России 20 лет. В Саудовской Аравии он составляет 90 лет, в Кувейте и ОАЭ около 140 лет.

Мировые разведанные запасы природного газа оцениваются в 144 трлн куб. м. Ресурсы природного газа, как правило, залегают вблизи нефтяных месторождений, поэтому наибольшими запасами располагают страны, богатые нефтью: Ближнего и Среднего Востока, СНГ (Россия, Туркменистан, Узбекистан, Казахстан), Северной и Латинской Америки (США, Канада, Мексика, Венесуэла), Северной Африки (Алжир, Ливия), Западной Европы (Норвегия, Нидерланды, Великобритания), Центральной Азии (Китай) и Юго-Восточной Азии (Бруней, Индонезия).

Россия сосредоточивает 1/3 мировых разведанных запасов природного газа (47 600 млрд куб. м). Это более чем в 2 раза превышает запасы занимающего второе место в мире Ирана (21 200 млрд куб. м) и существенно больше, чем у США (4654), Норвегии (3800), Алжира (3424), Туркмении (2650), Казахстана (1670), Нидерландов (1668), Ливии (1212), Великобритании (574). Основные запасы природного газа России (до 80% всех ее разведанных запасов) приходятся на Тюменскую область в Западной Сибири. Здесь на севере области располагаются крупнейшие в России и в мире месторождения природного газа: Уренгойское, Медвежье, Ямбургское, Заполярное, Надым, Бованенковское, Арктическое, Крузенштерновское, Новопортовское и др. Значительны также запасы природного газа Поволжья (Астраханское газоконденсатное месторождение и др.), Урала (Оренбургское месторождение), Северного (Вуктыльское, Войвожское, Штокмановское, Ардалинское месторождения и др.), Северо-Кавказского (Лениноканское и Староминское месторождения в Краснодарском крае, Майкопское месторождение в Республике Адыгея, Севере-Ставропольское и др.), Восточно-Сибирского (Марковское, Пилятинское, Криволукское и др. месторождения) и Дальневосточного (Усть-Вилюйское месторождение и др.) районов.

Среди стран СНГ высок газовый потенциал у Туркмении (Ачакское, Шатлыкское, Майское и др. месторождения), Казахстана (Карачаганакское и др.), Узбекистана (Газлинское, Мубарекское и др.), Азербайджана (Карадагское). Небольшие по запасам месторождения есть на Украине (Дашавское и Шебелинское).

Обеспеченность мировой экономики природным газом при современном уровне его добычи (2,2 трлн куб. м в год) составляет 71 год.

Урановые руды , составляющие базу современной ядерной энергетики, сконцентрированы в небольшой группе стран Северной и Латинской Америки (Канада, США, Бразилия), Африки (ЮАР, Нигер, Намибия), Западной Европы (Франция), СНГ (Россия). Есть они и в Австралии.

В России крупнейшие месторождения урановых руд находятся в Восточной Сибири (юг Читинской области).

Качество нашей жизни непосредственно зависит от потребления энергии. С ходом исторического развития при получении из природных систем все новых видов полезной продукции на ее единицу в среднем затрачивается все больше энергии (происходит снижение энергетической эффективности природопользования).

Наблюдается увеличение энергетических расходов на одного человека. Так, расход энергии на одного человека (в кДж/сут.) в каменном веке был порядка 17 тыс., в аграрном обществе –
50 тыс., в индустриальную эпоху – 293 тыс., а в передовых развитых странах настоящего времени – 960–1050 тыс., т.е. в 58–62 раза больше, чем у наших далеких предков.

С начала нашего века количество энергии, затрачиваемое на единицу сельскохозяйственной продукции, в развитых странах мира возросло в 8–10 раз, на единицу промышленной продукции в 10–12 раз.

Общая энергетическая эффективность сельскохозяйственного производства (соотношение вкладываемой и получаемой с готовой продукцией энергии) в промышленно развитых странах в 30 раз ниже, чем при примитивном земледелии. В ряде случаев увеличение затрат энергии на удобрения и обработку полей в десятки раз приводит лишь к незначительному (на 10–15%) повышению урожайности. Это связано с необходимостью параллельно с улучшением агротехники учитывать общую экологическую обстановку, налагаемые ею ограничения.

В начале 80-х гг. удельные затраты энергии на производство единицы валового национального продукта (ВНП) в ходе решительных мер по экономии энергии в промышленно развитых странах сократились на 15%. В течение последующего десятилетия ВНП возрос тут на 20%, а потребление энергии – лишь на 2% (это стало возможным в результате устранения неоправданных потерь энергии). Однако в то же время в развивающихся странах расход энергии увеличился на 24% и составил 10% от общемирового (против 5% в начале периода), т.е. имел тенденцию к быстрому росту. Несмотря на ожидаемое снижение потребления энергии на одну денежную единицу ВНП в килограммах условного топлива, общее увеличение ВНП и абсолютно необходимое возрастание валового национального дохода в развивающихся странах приводят к дальнейшему росту энергопотребления.

Как указывает Герберт Инхабер (Herbert Inhaber), научный исследователь из штата Южная Каролина (США), автор книги «Почему не удается сократить потребление энергоносителей» (Why Energy Conservation Fails, Quorum Books, 1997): «Энергосбережение посредством повышения эффективности потребления на самом деле приводит к его росту, а не к сокращению. Поскольку для отдельного вида деятельности требуется меньше топлива, высвободившиеся ресурсы используются в других целях. Как результат – возросшая экономическая активность и увеличившийся объем потребления энергоносителей».



В качестве примера из реальной жизни Инхабер приводит опыт Дании, когда, в конце 1970-х гг. правительство Дании ввело строгие стандарты на эффективность бытовых приборов, потребление электроэнергии этими приборами существенно сократилось (более, чем на 30%), отчасти потому, что некоторые бытовые приборы стали более экономичными, и, следовательно, их эксплуатация обходилась дешевле, но при этом увеличились продажи других бытовых приборов. Общий результат: совокупное внутреннее потребление электроэнергии в Дании возросло на 20%.

Однако рассматриваемая проблема снижения энергетической эффективности имеет весьма важное практическое следствие: рост энергетических затрат не может продолжаться бесконечно. Значит можно рассчитать вероятный момент неизбежного перехода на новые, энергосберегающие технологии промышленного и сельскохозяйственного производства, избежав тем самым теплового и экологического кризисов.

Для промышленности, быта, нормальной жизнедеятельности человека, а главное для дальнейшего развития мировой цивилизации энергетика необходима как воздух. Для всего мирового сообщества энергетическая проблема стоит очень остро. Дело не ограничивается размером запасов угля, нефти и газа и растущими расходами на их добычу, переработку и использование. С каждым годом обостряются экологические проблемы. Нынешнее время характеризуется пересмотром политики в области энергетики. На страницах газет и журналов ведется полемика о приоритетах ее развития. Важно помнить, что энергетика – система инерционная, и реформы в ней следует готовить загодя. Попробуем на основе имеющегося материала оценить возможные пути развития энергетики и основную стратегию этого развития. Задача эта потребует рассмотрения многих вопросов, ибо нет в современном обществе сферы, которая хотя бы косвенно не была бы связана с энергетикой.

Если проанализировать структуру мирового потребления ТЭР, то можно отметить следующее. Длительный период, до XIVв., основным энергоносителем, используемым человеком, была древесина. Позже начинают все больше использовать уголь, нефть, газ. В начале XX в. уголь стал составлять наибольшую долю от всех используемых человечеством энергетических ресурсов. К началу 70-х гг. XX в. доли потребления угля, нефти и газа выравниваются. В ряде стран уменьшается добыча угля. Нефть практически вытесняет уголь при производстве электроэнергии. На транспорте за счет нефти удовлетворяется свыше 90% мирового потребления. В 1970 г. доля нефти в структуре мирового потребления ТЭР составляла 46%, газа – 20%. Ситуация меняется после острого нефтяного кризиса 1973-74 гг. Индустриальные страны Запада, США, Япония активно переориентируют топливно-энергетическую базу своей национальной экономики на другие виды энергоресурсов и вводят политику эффективного использования энергии. В результате к 1980 г. доля нефти в мировом топливно-энергетическом балансе (ТЭБ) снижается до 42%, газа – до 16%. Доля твердого органического топлива составляла 25%. Ядерная энергетика покрывала всего 2-3% мирового потребления, и 13-14% обеспечивалось за счет возобновляемых источников энергии.

Прогнозы, сделанные в 80-х гг., обещали к 2020 г. дальнейшее быстрое уменьшение потребления нефти и газа – соответственно до 20% и 8-12%. Предполагалось, что это будет достигнуто благодаря росту потребления угля до 32%, значительному вовлечению в ТЭБ ядерного горючего – 36-40%, использованию возобновляемых источников энергии. Однако реальные тенденции изменений в структуре мирового топливно-энергетического баланса на 2020 г. оказались несколько иными. По прогнозам 90-х гг., доля твердого органического топлива, прежде всего, угля, будет, как и предполагалось в 80-х гг., составлять 32%, а вот доля потребления нефти снизится на меньшую величину, чем ожидалось ранее, и будет составлять 27%. Доля газа даже увеличится по сравнению с уровнем 1980 г. и будет равна 23%. Такие изменения тенденций связаны в первую очередь с появлением определенного недоверия к атомной энергетике из-за катастрофических последствий аварии на Чернобыльской АЭС и ряде других неприятных эксцессов на атомных промышленных объектах. В настоящее время разрабатываются принципиально новая концепция безопасности больших производственных систем и соответствующие ей новые поколения ядерных реакторов и проектов АЭС повышенной безопасности. Тем не менее, психологическое недоверие значительной части населения к атомной энергетике, радиофобию преодолеть не так просто. Кроме того, успехи применения энергосберегающих мероприятий и технологий в 80-90-х гг., обещающие разработки в области производства электроэнергии на базе газотурбинных, парогазовых установок, новые интеграционные процессы международного взаимодействия в области энергетики и экологии привели к наблюдающимся сегодня тенденциям в структуре мирового потребления ТЭР. Согласно им, доля ядерного топлива к 2020 г. будет составлять всего 5-6%. На долю энергосбережения и возобновляемых источников энергии придется 12-14%, причем из них 9-10% будет покрываться за счет энергосбережения.

На рис. 1.5 представлена структура мирового потребления ТЭР в динамике с 1980 г. по 2020 г., дано предполагаемое развитие по прогнозам 80-х и по прогнозам 90-х гг.

Очевидно, роль энергосбережения весьма существенна и соизмерима со значением других традиционных источников энергии в покрытии энергетических потребностей человечества.
К тому же энергосбережение позволяет избежать разработки новых угольных месторождений, бурения нефтяных скважин, ввода новых теплоэнергетических, атомных установок и т.п., способствует совершенствованию промышленных технологий. Все это приводит к меньшему загрязнению окружающей среды. В этом смысле энергосбережение и называют самостоятельным экологически чистым источником энергии.

Велика роль установок на возобновляемых источниках энергии - гидроэлектростанций, гелиоустановок, ветровых двигателей, установок, использующих энергию океана, тепло земных недр, энергию, заключенную в растениях. Их доля в мировом энергетическом балансе невелика, но доля эта очень важна: они обеспечат энергией небольшие поселения и объекты в сельских и малонаселенных местностях, где невыгодно строить крупные электростанции или прокладывать линии электропередачи, нефте- и газопроводы.

Помимо устойчивых тенденций в мировом потреблении ТЭР, представленных на рис. 1.5, наблюдаются также временные колебания, например, цен на нефть, в том числе обусловленные политическими событиями. При прогнозировании и планировании национальной энергетики принимаются во внимание как основные тенденции развития мировой энергетики для выработки стратегических решений, так и колебания - для принятия тактических решений.

Уголь и древесина (твёрдое топливо).

Природный газ.

Ядерное топливо.

Энергосберегающие мероприятия и использование возобновляемых источников энергии.

Рис. 1.5. Структура мирового потребления ТЭР

В обозримой перспективе развитие топливной базы энергетики во всем мире будет определяться следующими основными направлениями:

· удорожанием практически всех топливно-энергетических ресурсов при опережающем росте стоимости высококачественного газомазутного топлива;

· проведением активной энергосберегающей политики во всех отраслях экономики и освоением в максимально возможных масштабах нетрадиционных возобновляемых источников энергии;

· вовлечением в топливно-энергетический баланс ядерного горючего и интенсивным поиском альтернативных ему безопасных источников энергии, имеющих промышленное значение;

· ужесточением экологических требований.