Критерии выбора стратегии в условиях риска. Критерии принятия решений в условиях неопределенности

Критерий Сэвиджа (критерий минимаксного риска).

Критерий Гурвица.

Решение.

1. Максиминный критерий Вальда .max min а ij

Вычислим минимальные значения по строкам min а ij , а далее из них выберем максимальное.

Таким образом, получаем Н =max min а ij = 15 i j

Ответ: оптимальной стратегией 1-го игрока А является

стратегия А 4 .

Параметр Гурвица возьмем равным γ =0,6: γ= min а ij +(1-γ) max а ij

5 10 18 255 25 5*0,6+0,4*25=13

А = 8 7 8 23 7 23 7*0,6+0,4*23=13,4

21 18 12 21 12 18 12*0,6+0,4*18=14,4

20 22 19 1515 22 15*0,6+0,4*22=17,8

Получаем H =max=17.8

стратегия А 4 .

Необходимо построить матрицу рисков.

Для этого:

1) вычислить максимальные значения по столбцам

2) вычислить матрицу рисков: r ij = max а ij - а ij

21-5 22-10 19-18 25-25 16 12 1 0

r ij = 21-8 22-7 19-8 25-23 = 13 15 11 2

21-21 22-18 19-12 25-21 0 4 7 4

21-20 22-22 19-19 25-15 1 0 0 10

3) вычислить максимальные значения по строкам и из них выберем строку с минимальным значением:

r ij = 0 4 7 4 7

Получаем H =minmax r ij = 7 при применении стратегии А 3 .

Ответ: оптимальной стратегией первого игрока является

стратегия А 3 .

4. Критерий Лапласа. n

Вычислить средние арифметические по строкам [ 1/n ∑ а ij ]

5 10 18 25 0.25 (5+10+18+25)=14.5 j =1

A = 8 7 8 23 0.25 (8+7+8+23)=11.5

21 18 12 21 0.25 (21+18+12+21)=18

20 22 19 15 0.25 (20+22+19+15)=19

Получаем H =max [ 1/n ∑ а ij ] =19 при применении стратегии А 4 .

Ответ: оптимальной стратегией первого игрока является

стратегия А 4 .

В 1 В 2 В 3 В 4 n

А 1 5 10 18 25 H =max∑P j а ij

А 2 8 7 8 23 i j =1

А 3 21 18 12 21

А 4 20 22 19 15

Вероятности стратегий второго игрока.

В 1 В 2 В 3 В 4
0.2 0.15 0.35 0.3

5*0.2+10*0.15+18*0.35+25*0.3=16.30

8*0.2+7*0.15+8*0.35+23*0.3=12.35

21*0.2+18*0.15+12*0.35+21*0.3=17.40

20*0.2+22*0.15+19*0.35+15*0.3=18.45

Получаем Н = 18,45 при применении стратегии А 4 .

Ответ: оптимальной стратегией первого игрока является

стратегия А 4 .

ПРИМЕР №2

Предприятие имеет возможность самостоятельно планировать объемы выпуска сезонной продукции А 1 , А 2 , А 3 . Не проданная в течении сезона продукция позже реализуется по сниженной цене. Данные о себестоимости продукции, отпускных ценах и объемах реализации в зависимости от уровня спроса приведены в таблице:



Требуется:

1) придать описанной ситуации игровую схему, указать допустимые стратегии сторон, составить платежную матрицу

Указание. Для уменьшения размерности платежной матрицы считать, что одновременно на все три вида продукции уровень спроса одинаков:

повышенный, средний или пониженный.

В игре участвуют 2 игрока: А - производитель, В - потребитель.

Игрок А стремится реализовать свою продукцию так, чтобы получить максимальную прибыль. Стратегиями игрока А являются:

А 1 - продавать продукцию при повышенном состоянии спроса

А 2 - продавать продукцию при среднем состоянии спроса

А 3 - продавать продукцию при пониженном состоянии спроса

Игрок В стремится приобрести продукцию с минимальными затратами. Стратегиями игрока В являются:

В 1 - покупать продукцию при повышенном состоянии спроса

В 2 - покупать продукцию при среднем состоянии спроса

В 3 - покупать продукцию при пониженном состоянии спроса

Интересы игроков А и В - противоположны. Определим цену продукции в течение сезона и после уценки:

Рассчитаем элементы платежной матрицы

Предложение Спрос
стратегии Повышенный спрос 14+38+24 Средний спрос 8+22+13 Пониженный спрос 5+9+7
Повышенный спрос 14+38+24 14*0,8+38*0,5+ 24*1,3=61,4 8*0,8+(14-8) *0,2+ 22*0,5+(38-22)*(-5) +13*1,3+(24-13)*0,2 =29,7 5*0,8+(14-5)*0,2+ 9*0,5+(38-9)*(-5)+ 7*1,3+(24-7)=8,3
Средний спрос 8+22+13 8*0,8+22*0,5+ 13*1,3=34,3 8*0,8+22*0,5+ 13*1,3=34,3 5*0,8+(8-5)*0,2+ 9*0,5+(22-9)*(-5)+ 7*1,3+(13-7)*0,2 =12,9
Пониженный спрос 5+9+7 5*0,8+9*0,5+7*1,3 =17,6 5*0,8+9*0,5+ 7*1,3=17,6 5*0,8+9*0,5+ 7*1,3=17,6

Платежная матрица примет вид

Стратегии В 1 В 2 В 3 α i =min а ij j
А 1 61.4 29.7 8.3 8.3
А 2 34.3 34.3 12.9 12.9
А 3 17.6 17.6 17.6 17.6
β j =max а ij i 61.4 34.3 17.6

α = max α i = 17.6 β = min β j = 17.6

Так как α = β = ν = 17,6, то найдена седловая точка. Значит оптимальное решение: А 3 ; В 3

Производитель (игрок А) получит гарантированную прибыль в размере 17,6 ден.ед., если будет реализовывать свою продукцию при пониженном уровне спроса в объеме 5,9 и 7 ед. соответственно продукции А 1 , А 2 и А 3

Контрольные вопросы:

1.Дайте определение конфликтной ситуации.

2.Как называется математическая модель конфликтной ситуации?

3.Как называются заинтересованные стороны в теории игр?

4.Какая игра называется антагонистической? Приведите пример.

5.Дайте определение понятию «стратегия».

6.Что понимается под исходом конфликта?

7.Дайте определение понятию «выигрыш».

8.На какие классы делятся игры в зависимости от числа игроков?

9.В чем состоит цель игрока А при выборе стратегии?

10. В чем состоит суть максиминного принципа оптимальности и как называется выигрыш, полученный в соответствии в этим принципом?

11.Почему максимин α называют нижней ценой игры?

12.В чем состоит цель игрока В при выборе стратегии?

13.Почему минимакс β называют верхней ценой игры?

14.Почему справедливо неравенство α < β ?

15.Дайте определение цены игры в чистых стратегиях.

16.Какая игра называется игрой в смешанных стратегиях?

17.Как найти оптимальную смешанную стратегию игрока А и цену игры 2 х n геометрически?

18.Что в теории игр понимается под термином «природа»?

19.Приведите примеры в которых решение принимается в условиях неопределенности, связанной с неосознанным принятием различных факторов.

20.Чем отличается выбор оптимальных стратегий игроков в играх с природой от антагонистических игр?

21.Что понимается под риском игрока в игре с природой, и каким образом формируется матрица рисков,

22.Дайте определение критерия Вальда и как по нему определяется выигрыш?

23. Дайте определение критерия Севиджа и как по нему определяется выигрыш?

24. Дайте определение критерия Лапласа и как по нему определяется выигрыш?

25. Дайте определение критерия Байеса и как по нему определяется выигрыш?

26. Какой принцип выбора оптимальной стратегии лежит в основе критерия пессимизма –оптимизма Гурвица относительно выигрышей?

8.Лекция. Системы массового обслуживания.

Выше рассмотренная задача из теории игр предполагала выбор оптимальной стратегии в условиях риска. Это ситуации, когда игрок знает вероятности наступления исходов и последствий для каждого решения.

Совсем другая ситуация наступает, когда эти вероятности не известны, т.е. имеет место полная неопределённость в отношении возможности реализации состояния среды. В этом случае игру можно представить таким образом, что в ней имеется один игрок и некая действительность, называемая природой. Условия такой игры обычно представляется такой же платёжной матрицей, что и раньше, в которой строки представляют стратегии игрока, а столбцы – стратегии природы.

В данном случае при выборе наилучшего решения обычно используют следующие критерии:

1. Максимаксный критерий, или критерий крайнего оптимизма – определяет альтернативу, которая максимизирует максимальный результат для каждой альтернативы, т.е. выбирается стратегия, которой соответствует

2. Максиминный критерий Вальда, или критерий крайнего пессимизма – определяет альтернативу, которая максимизирует минимальный результат для каждой альтернативы, т.е. выбирается стратегия, которой соответствует

3. Критерий минимаксного риска Сэвиджа. Согласно этому критерию выбирается стратегия, при которой величина риска в наихудших условиях минимальна, т.е. равна

Здесь риск = () – .

4. Критерий оптимизма-пессимизма Гурвица рекомендует при выборе решения не руководствоваться ни крайним пессимизмом, ни крайним оптимизмом. Согласно этому критерию стратегия выбирается из условия

+ (1 – k ) }.

Значение коэффициента пессимизма k выбирается исследователем между нулём и единицей из практических соображений.

5. Критерий безразличия Лапласа. В условиях полной неопределённости предполагается, что все возможные среды (природы) равновероятны. Этот критерий выявляет альтернативу с максимальным средним результатом, т.е.

Если известны вероятности реализации для всех состояний среды, можно определить ожидаемую стоимостную оценку EMV для каждой альтернативы. Один из наиболее распространённых критериев выбора альтернативы – максимальная EMV.



Для каждой альтернативы ожидаемая стоимостная оценка EMV есть сумма всевозможных выигрышей для этой альтернативы, умноженных на вероятности реализаций этих выигрышей:

Максимальная EMV в случае равных вероятностей совпадает с критерием безразличия Лапласа.

Проиллюстрируем эти положения на следующем примере, реализованном в модуле Decision Analysis/Decision Tables.

На рисунке 4.6 просчитаны почти все описываемые критерии, кроме критерия минимаксного риска Сэвиджа, который рассчитан на рисунке 4.7.

Из обозначений строк и столбцов очевидны те или иные критерии. Так, например, в столбце EMV (рисунок 4.6) внизу показана максимальная EMV. Кроме того, внизу этого рисунка прописаны значения конкретных критериев и указано, на каких альтернативах они реализованы.

Рисунок 4.6 – Окно отчёта о решении задачи анализа решений

Рисунок 4.7Окно отчёта о вычислении критерия минимаксного риска Сэвиджа

На рисунке 4.7 показаны расчёты критерия минимаксного риска Сэвиджа (он равен 4 и реализован второй альтернативой).

Задания к выполнению лабораторной работы №4

Необходимо выполнить анализ всех задач, описанных в этом разделе.

Исходную информацию для выполнения лабораторной работы возьмёте из задания по транспортной задаче. Игра должна быть 4х4. Матрица транспортных расходов – это три стратегии игрока А. Четвёртую стратегию этого игрока составит строка потребностей (последняя строка, не включённая в матрицу транспортных расходов).

Для решения задачи графическим методов выберите две активные стратегии игрока А с минимальными частотами.

Для анализа игры с природой возьмите эту же платёжную матрицу.

Лабораторная работа №5

Системы массового обслуживания

Общие сведения

Существует широкий класс задач, с которыми приходится постоянно сталкиваться в повседневной и хозяйственной деятельности, где имеют место процессы, приводящие к задержкам в обслуживании и очередям. Системы, в которых протекают указанные процессы, получили название систем массового обслуживания (МО), а математическим описанием или разработкой математических моделей процессов, протекающих в них, занимается теория МО.

В процессе изучения очередей сначала необходимо обращать внимание на следующие основные её компоненты: входящий поток требований, каналы обслуживания, наличие очереди и выходящий поток. Эти составляющие не требуют разъяснения, за исключением дисциплины очереди. Последнее – это просто правило обслуживания. В дальнейшем мы будем рассматривать правило: первый пришёл, первый обслуживается. Системы МО связаны с двумя видами издержек: издержки обслуживания, увеличивающиеся при повышении уровня обслуживания, и издержки, связанные с ожиданием, уменьшающиеся с увеличением уровня обслуживания. Как известно, существует точка минимума общих издержек системы МО.

Определение оптимального уровня обслуживания, минимизирующего суммарные издержки системы МО, и является одной из основных задач при разработке и эксплуатации систем МО.

Одним из важнейших условий принятия эффективного решения, направленного на достижение цели во временной перспективе, является наличие соответствующего объема релевантной информации. Неполная информация, невозможность достоверного предсказания будущих событий и факторов, могущих повлиять на результат, к которому приводит принимаемое решение, являются признаками неопределенности. Достаточно большая часть управляющих решений принимается в условиях неопределенности. Потенциал неопределенности - внешняя среда организации.

Принятие решений в условиях неопределенности связывается с понятием риска и производится с помощью методов исследования операций и теории статистических решений. В общем виде задача принятия решения в условиях неопределенности представляется в виде таблицы эффективности (табл.1).

Таблица1.

О 1 О 2 ... O n
p 1 a 11 a 12 ... a 1 n
p 2 a 21 a 22 ... a 2 n
... ... ... ... ...
p m a m1 a m2 ... a mn

где O n - условия обстановки, которые точно неизвестны, но о которых можно сделать n-предложений (спрос, количество поставщиков, удовлетворенность материалами);

P m -возможные стратегии, линии поведения решения.

Каждой паре стратегии и обстановки, соответствуют выигрыши -A mn .

Выигрыши, указанные в таблице, являются рассчитанными показателями эффективности стратегии (решения) в различных обстановках.

Представленная задача направлена на принятие решений при разработке планов развития предприятий, разработке производственных программ, планов выпуска новых видов продукции, направленности инноваций, выбора стратегий страхования, инвестиции, средств и т.д.

В теории статистических решений применяется специальный показатель риска, который показывает выгодность принимаемой стратегии в данной обстановке с учетом ее неопределенности. Риск рассчитывается как разность между ожидаемым результатом действий при наличии точных данных обстановки и результатом, который может быть достигнут, если эти данные неопределенны. По этой разности рассчитывается таблица рисков выпуска нового вида продукции. Таблица рисков дает возможность оценить качество различных решений и установить полноту реализации возможностей при наличии риска. Выбор наилучшего решения зависит от степени неопределенности.

В зависимости от степени неопределенности обстановки различают 3 варианта принятия решений:

1. Выбор оптимального решения, когда вероятности возможных вариантов обстановки известны. Оптимальное решение определяется по max сумм произведений вероятностей различных вариантов обстановки P(O 1) на соответствующие значения выигрышей А (таблица 6 эффективности) по каждому решению.

2. Выбор оптимального решения, когда вероятности возможных вариантов обстановки неизвестны.

3. Выбор оптимального решения по принципам подхода к оценке результата действий.

В условиях неизвестной вероятности обстановки возможно принятие следующих решений:

а) max-min или “рассчитывай на худшее“ - выбор решения, гарантирующий выигрыш в любых условиях, не меньше, чем наибольший возможный в худших условиях;

б) min max риск в любых условиях. За оптимальное принимается решение, для которого риск, max при различных вариантах обстановки, кажется минимальным.

За оптимальное решение в зависимости от линии ориентации ЛПР принимается решение, для которого показатель G (критерий пессимизма - оптимизма Гурвица) окажется максимальным:

где - минимальный выигрыш, соответствующий решению m;

Максимальный выигрыш, соответствующий решению m;

k - коэффициент, характеризующий линию поведения (ориентации) ЛПР, .

Графически значение k по отношению к линии поведения можно интерпретировать следующей схемой:

значение k


0 0,25 0,5 0,75 1

Линия ориентации в расчете

на лучшее на худшее

Задача:

Предлагается 3 варианта вложения инвестиций:

1) Вложить все имеющиеся средства в акции компании “Нефть-АГ”, что гарантирует высокий доход при соответствующей обстановке;

2) Вложить все средства в ГКО при гарантии низкого и стабильного дохода;

3) Вложить часть средств в акции “Нефть-АГ”, часть в ГКО - т.е. произвести диверсификацию портфеля средств.

Перспектива обозначена тремя вариантами обстановки (исхода событий).

Принять решение по проблеме вложения инвестиций, имея в качестве исходных данных таблицу выигрышей (табл.2).

Таблица 2.

Pi/Oi O 1 O 2 O 3
P 1 0.99 0.1
P 2 0.5 0.5 0.3
P 3 0.25 0.7 0.4

P i - вариант решения;

O i - вариант обстановки;

O 1 - компания “Нефть-АГ” - обанкротилась, ГКО - приносит стабильный доход.

O 2 - компания ”Нефть-АГ” - процветает;

O 3 - кризис в экономике.

Определим оптимальное решение, при котором выигрыш в любых условиях будет не меньше, чем наибольший возможный в худших условиях (max-min).

Из табл. 2 для решения P 1 наименьший выигрыш составит 0, для P 2 - 0.3, для P 3 - 0.25.

Наибольший возможный выигрыш при самом плохом стечении обстоятельств составит 0.3, что соответствует принятию решения P 2 , т.е. при любых вариантах обстановок решение P 2 будет не самым худшим.

Оптимальное решение при условии, что риск окажется минимальным из максимальных его значений при различных вариантах решений определяется из табл.7. Предварительно рассчитывается матрица рынков. При этом максимальный риск при принятии решения P 1 - 0.5; при P 2 - 0.49; при P 3 - 0.29. Из ряда максимальных рисков за оптимальное принимается решение P 3 , имеющее минимальный уровень риска 0,29.

Рассчитаем критерий пессимизма - оптимизма Гурвица для различных вариантов решений в зависимости от значения принятого коэффициента k.

Для решения P 1

Решение:

Рассчитаем матрицу рисков вложения инвестиций (табл.3).

Таблица3.

Pi/Oi O 1 O 2 O 3
P 1 0.5-0=0.5 0.99-0.99=0 0.4-0.1=0.3
P 2 0.5-0.5=0 0.99-0.5=0.49 0.4-0.3=0.1
P 3 0.5-0.25=0.25 0.99-0.7=0.29 0.4-0.4=0

При условии равновероятности обстановок их вероятности равны и составляют:

P(O 1)=P(O 2)=P(O 3)=0.33

Математически ожидания выигрышей при условии равновероятности обстановок определятся из выражения:

W i =P(O i)*A ij ,

где P(O i)-вероятность будущей обстановки;

A ij -выигрыш, соответствующий i-ому решению при j-той обстановке.

W 1 =0.33*0+0.33*0.99+0.33*0.1=0.3597

W 2 =0.33*0.5+0.33*0.5+0.33*0.3=0.329

W 3 =0.33*0.25+0.33*0.7+0.33*0.4=0.445

В условиях равновероятности будущих обстановок наиболее оптимальным является решение P 3.

При других значениях вероятностей обстановок решение может быть другим.

Выбор решения по критерию Гурвица:

для решения P 1: G 1 =0,495;

для решения P 2: G 2 =0,5*0,3+(1-0,5)*0,5=0,4;

для решения P 3: G 3 =0,5*0,25+(1-0,5)*0,7=0,475.

При k=0,5 за оптимальное принимается решение P 1 .

Аналогично рассчитываются значения G i при других значениях коэффициента.

Полученные значения G i сводим в таблицу 4.

Таблица4.

G i при заданных k i
P i /k i 0.00 0.25 0.5 0.75 1.00
P i 0.99 0.743 0.495 0.362
P 2 0.5 0.45 0.4 0.35 0.3
P 3 0.7 0.587 0.475 0.362 0.25
Выбранное решение P 1 P 1 P 1 P 1 P 3 P 2

Лицо, принимающее решение в соответствии с выбранным k i за оптимальное принимает решение, имеющее максимальное значение G i . При k i =0,75 - G max =0,362. За оптимальное принимается решение Р 1 или Р 3 .

Выбор альтернатив в условиях неопределенности

Выбор наилучшего решения в условиях неопределœенности существенно зависит от того, какова ее степень, т.е какой информацией располагает ЛПР. Выбор альтернатив в условиях неопределœенности, когда вероятности их возможных вариантов неизвестны, но существуют принципы подхода к оценке результатов действий, обеспечивает использование различных критериев.

Учитывая зависимость отэтого последствия решений можно оценить через систему критериев, предусматривающих различную степень риска.

1. Максиминный критерий Вальда (критерий крайнего пессимизма) - «рассчитывай на худшее». В соответствии с ним, если требуется гарантия, чтобы выигрыш в любых условиях оказывался не меньше, чем наибольший из возможных в худших условиях, то оптимальным решением будет такое, для которого выигрыш окажется максимальным из всœех минимальных при различных вариантах условий.

Этот критерий ориентирует лицо, принимающее решение, на наихуд­шие условия и рекомендует выбрать ту стратегию, для которой выигрыш максимален. В других, более благоприятных условиях использование этого критерия приводит к потере эффективности системы или операции.

2. Минимаксный критерий Сэвиджа (минимизация большого риска) - «рассчи­тывай на лучшее». При его использовании обеспечивается наименьшее значение макси­мальной величины риска. Критерий Сэвиджа, как и критерий Вальда,- это критерий крайнего пессимизма, но пессимизм проявляется в том, что минимизируется максимальная потеря в выигрыше по сравнению с тем, чего можно было бы достичь в данных условиях.

3. Критерий Лапласа или Байеса - «ориентируйся на среднее».

Согласно этому критерию, если вероятность состояния среды неизвестна, варианты условий должны приниматься как равные. В этом случае выбирается альтернатива, характеризующаяся самой предполагаемой стоимостью при условии равных вероятностей. Критерий Лапласа позволяет условие неопределœенности сводить к условиям риска. Его называют критерием рациональности, он подходит для стратегических долгосрочных решений, как и описанные выше критерии.

4. Критерий крайнего оптимизма - «верь в удачу».

Максимаксный критерий предполагает, что состояние среды будет наиболее благо­получным, в связи с этим крайне важно выбрать решение, обеспечивающее мак­симальный выигрыш среди максимально возможных.

5 . Критерий пессимизма - оптимизма Гурвица - «компромисс».

Согласно этому критерию при выборе решения в условиях неопреде­ленности не руководствоваться ни крайним пессимизмом (всœегда рассчи­тывай на худшее), ни оптимизмом (всœе будет наилучшим образом). Реко­мендуется некое среднее решение. То есть крайне важно выбирать между двумя линиями поведения. Оптимальным решением будет такое, для которого окажется максимальным показатель G. Этот критерий имеет вид:

G = max [h min а0 + (1 - h )max aij ], (6)

где h - коэффициент, выбираемый экспертно из интервала между 0 и 1. Использование этого коэффициента вносит дополнительный субъ­ективизм в принятие решений.

6. Критерий математического ожидания предназначен для выбо­ра оптимальной стратегии поведения, ᴛ.ᴇ. для принятия серии решений:

7. Обобщенный критерий Гурвица.

Рассмотрим подробнее способы выбора решений в финансово-эконо­мической области в условиях риска, ᴛ.ᴇ. в условиях состояния окружающей среды. Математическая модель ситуаций такого типа принято называть игрой с внешней средой (природой). В игре принимают участие два игрока - лицо, принимающее решение и природа. При этом игрок действует осоз­нанно, стремясь выбрать наиболее удовлетворительное для себя решение, в то время как природа случайным образом проявляет свои состояния объективно, не противодействуя сознательно игроку, без учета возмож­ного выбора игроком своих стратегий и абсолютно безразлично к резуль­тату игры. Далее составляется матрица рисков.

Под ситуацией риска принято понимать, когда можно указать не только возможные последствия (выигрыш) каждой альтернативы, но и вероятности их появления. Основным критерием здесь является математическое ожидание. Остальные имеют подчинœенное значение.

В случае если ни одно из состояний «среды» нельзя назвать более вероятным, чем другие, ᴛ.ᴇ. если всœе они являются приблизительно равновероятными, то решение можно принимать с помощью критерия Лапласа. В этом случае оптимальным нужно считать то решение, которому соответствует наиболь­шая сумма выплат.

Когда два разных критерия предписывают принять одно и то же реше­ние, это считается дополнительным подтверждением его оптимальности. В случае если же они указывают на разные решения, то предпочтение в ситуации риска нужно отдать тому из них, на ĸᴏᴛᴏᴩᴏᴇ указывает критерий математи­ческого ожидания. Именно он является основным для данной ситуации.

Дополнительная информация может помочь сделать более удачный вы­бор. Возникает вопрос, какую предельно высокую цену за нее можно запла­тить, чтобы от этого была выгода. Теория решений для ответа на данный вопрос предлагает найти математическое ожидание выплаты, соответству­ющее идеальной информации, а затем сравнить его с математическим ожи­данием, ĸᴏᴛᴏᴩᴏᴇ можно получить при обычной информации. Разницу между ними и предлагается считать верхним пределом цены любой информации.

В проектах должны предусматриваться специфические механизмы

стабилизации, обеспечивающие защиту интересов участников при неблагоприятном изменении условий реализации проекта (даже если цели проекта достигнуты не полностью или вообще не достигнуты) и предотвращающие возможные действия участников, ставящие под угрозу его успешную реализацию. Возможно снижение степени риска или его перераспределœение между участниками.

Пример. Фирма готова перейти к массовому выпуску нового вида продукции, но не знает, когда лучше это сделать: немедленно, через 1 год или даже через 2 года. Дело в том, что новая продукция в силу своей дороговизны, очевидно, не сразу найдет массового покупателя. Поэтому излишняя торопливость может привести к тому, что оборотные средства фирмы окажутся надолго иммобилизованными в осевшей на складах готовой продукции, а это грозит убытками. Но медлить тоже нельзя: конкуренты перехватят инициативу, и значительная часть ожидаемой прибыли будет упущена. Фирма не смогла даже приблизительно оценить вероятности для разных сроков появления массового спроса. Поэтому налицо ситуация неопределенности.

Возможные последствия от принимаемых решений в условиях разной реакции рынка на новую продукцию представлены ниже в табл. 10.10.

Таблица 10.10

Как видно из таблицы, немедленный переход к массовому выпуску нового вида продукции может дать наибольшую прибыль, но в случае неудачи грозит большими убытками. Другие варианты выбора срока перехода к массовому производству данного вида продукции исключают возможность возникновения убытков, но дают относительно меньшую прибыль.

Выбор оптимального решения здесь затруднен отсутствием сведений о вероятностях той или иной реакции рынка.

Для выбора оптимальной стратегии в ситуации неопределенности используются следующие критерии:

Критерий MAXIMAX определяет альтернативу, максимизирующую максимальный результат для каждого состояния возможной действительности. Это критерий крайнего оптимизма. Наилучшим признается решение, при котором достигается максимальный выигрыш, равный

Запись вида m f x означает поиск максимума перебором столбцов, а запись вида т ^ х - поиск максимума перебором строк в матрице выплат.

Нетрудно увидеть, что для нашего примера наилучшим решением будет размер выплат в 16 млн у.с., т.с. немедленный переход к новому выпуску продукции.

Следует заметить, что ситуации, требующие применения такого критерия, в общем, нередки и пользуются им нс только безоглядные оптимисты, но и игроки, вынужденные руководствоваться принципом «или пан или пропал».

Максиминный критерий Вальда еще называют критерием пессимиста, поскольку при его использовании как бы предполагается, что от любого решения надо ожидать самых худших последствий и, следовательно, нужно найти такой вариант, при котором худший результат будет относительно лучше других худших результатов. Таким образом, он ориентируется на лучший из худших результатов .

Расчет максимина в соответствии с приведенной выше формулой состоит из двух шагов.

Находим худший результат каждого варианта решения, т.е. величину min Ху (табл. 10.11).

Расчет максимина (первый шаг)

Из худших результатов, представленных в столбце минимумов, выбираем лучший. Он стоит на второй строке таблицы выплат, что предписывает приступить к массовому выпуску новой продукции через год.

Это перестраховочная позиция крайнего пессимиста. Такая стратегия приемлема, когда инвестор не столь заинтересован в крупной удаче, но хочет застраховать себя от неожиданных проигрышей. Выбор такой стратегии определяется отношением принимающего решения лица к риску.

Критерий MINIMAX, или критерий Сэвиджа, в отличие от предыдущего критерия ориентирован нс столько на минимизацию потерь, сколько на минимизацию сожалений по поводу упущенной прибыли. Он допускает разумный риск ради получения дополнительной прибыли. Пользоваться этим критерием для выбора стратегии поведения в ситуации неопределенности можно лишь тогда, когда есть уверенность в том, что случайный убыток нс приведет фирму (проект) к полному краху.

Расчет данного критерия включает в себя четыре шага.

  • 1. Находим лучшие результаты каждого в отдельности столбца, т.с. шах Ху. Таковыми в нашем примере будут для первого столбца 16, для второго - 12 и третьего - 5. Это тс максимумы, которые можно было бы получить, если бы удалось точно угадать возможные реакции рынка.
  • 2. Определяем отклонения от лучших результатов в пределах каждого отдельного столбца, т.е. шах Ху - Ху. Получаем матрицу отклонений, которую можно назвать матрицей сожалений, ибо ее элементы - это недополученная прибыль от неудачно принятых решений из-за ошибочной оценки возможной реакции рынка. Матрицу сожалений можно оформить в виде табл. 10.12.

Матрица сожалений

Судя по приведенной матрице, не придется ни о чем жалеть, если фирма немедленно перейдет к массовому выпуску новой продукции и рынок сразу же отреагирует на это массовым спросом. Однако если массовый спрос возникнет только через 2 года, то придется пожалеть о потерянных вследствие такой поспешности 12 млн у.с.

3. Для каждого варианта решения, т.с. для каждой строки матрицы сожалений, находим наибольшую величину. Получаем столбец максимумов сожалений в виде табл. 10.13.

Таблица 10.13

Максимальные сожаления

4. Выбираем то решение, при котором максимальное сожаление будет меньше других. В приведенном столбце максимальных сожалений оно стоит на второй строке, что предписывает перейти к массовому выпуску через год.

Критерий пессимизма-оптимизма Гурвица при выборе решения рекомендует руководствоваться некоторым средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. То есть критерий выбирает альтернативу с максимальным средним результатом (при этом действует негласное предположение, что каждое из возможных состояний среды может наступить с равной вероятностью). Формально данный критерий выглядит так:

где к - коэффициент пессимизма, который принадлежит промежутку от О до 1 в зависимости оттого, как принимающий решение оценивает ситуацию. Если он подходит к ней оптимистически, то эта величина должна быть больше 0,5. При пессимистической оценке он должен взять упомянутую величину меньше 0,5.

При к = 0 критерий Гурвица совпадает с максимаксиым критерием, а при к = 1 - с критерием Вальда.

Рассчитаем критерий Гурвица для условий нашего примера, придав упомянутому параметру значение на уровне 0,6:

Я, = 16 х 0,6 + (-6) х 0,4 - 7,2;

Я 2 - 12 х 0,6 + 2 х 0,4 = 8;

Я: , = 6 х 0,6 + 0 х 0,4 = 3,6.

По максимуму значения данного критерия надо принять решение о переходе к массовому выпуску новой продукции через год.

В нашем примере стратегия Л 2 фигурирует в качестве оптимальной но трем критериям выбора из четырех испытанных, степень ее надежности можно признать достаточно высокой для того, чтобы рекомендовать эту стратегию к практическому применению. Действительно, в нашем примере при таком решении не придется особенно сожалеть об упущенной прибыли и не придется ожидать больших убытков, т.е. сразу минимизируются и сожаления об упущенной прибыли, и возможные убытки.

Имитационное моделирование по методу Монте-Карло (Monte - Carlo Simulation) позволяет построить математическую модель для проекта с неопределенными значениями параметров и, зная вероятностные распределения параметров проекта, а также связь между изменениями параметров (корреляцию), получить распределение доходности проекта.

Процедура имитации Монте-Карло базируется на последовательности следующих шагов (рис. 10.6).

Метод Монте-Карло наиболее полно характеризует всю гамму неопределенностей, с которой может столкнуться реальный инвестиционный проект, и через задаваемые изначально ограничения позволяет учитывать всю доступную проектному аналитику информацию. Практическая реализация данного метода возможна только с применением компьютерных программ, позволяющих описывать прогнозные модели и рассчитывать большое число случайных сценариев.

Одним из программных продуктов, реализующих метод Монте-Карло, является пакет «Risk Master» (RM), разработанный в Гарвардском университете с целью обучения студентов экспертизе ин- всстиционн ых п роектов.


Рис. 10.6.

Структурно программа RM включает два блока - имитационный и аналитический. В ходе работы первого из них происходит имитация методом Монте-Карло модели инвестиционного проекта, построенной в электронных таблицах. Задачей второго блока программы является анализ полученных на первом этапе результатов и вычисление показателей совокупного риска проекта.

15 процессе работы программы RM математическая модель проекта подвергается повторяющимся имитациям, в ходе каждой из которых ключевые рисковые переменные выбираются случайным образом в соответствии с заранее заданными распределениями вероятностей и условиями корреляции. Затем проводится статистический анализ результатов всех имитаций для получения распределения вероятностей результирующего показателя проекта.

Рассмотрим эти стадии подробнее.

1. Построение математической модели инвестиционного проекта - это первая стадия анализа рисков в соответствии с программой RM. Модель содержит алгебраические и (или) логические соотношения между его факторами (переменными). Она должна включать в себя все важные для проекта переменные (и не включать лишних), а также правильно отражать корреляционные связи между ними. Кроме того, одно из важных требований при разработке модели состоит в необходимости точно предсказывать проектный результат, получаемый на основании внутри модельной обработки входной информации.

Успешное завершение первой стадии позволяет перейти к следующей. Среди известных и важных для проекта факторов выявляются ключевые рисковые проектные переменные. Риск проекта в целом представляет собой функцию риска отдельных переменных оценочной модели, поэтому следует различать, во-первых, тс из них, к которым очень чувствителен результат проекта, и, во-вторых, те, которые обладают высокой степенью неопределенности (сильный разброс значений). Другими словами, есть переменные, значения которых варьируют в большом интервале, не оказывая существенного влияния на отдачу проекта, и есть переменные достаточно стабильные, но даже небольшие отклонения их значений могут вызывать значительный разброс отдачи проекта. Поэтому разбиение всех факторов проекта на соответствующие группы является необходимым по двум причинам:

  • ? во-первых, чем больше рисковых переменных включено в математическую модель, тем сложнее отразить все корреляционные связи между ними;
  • ? во-вторых, затраты, необходимые для нахождения распределений вероятностей и корреляционных зависимостей большого числа переменных, могут превысить выгоду от включения этих переменных в модель.

В связи с этим, представляется целесообразным сфокусировать внимание и имеющиеся ресурсы на определении и проверке предположений относительно наиболее чувствительных (анализ чувствительности) и неопределенных (анализ неопределенности) факторов модели.

Затем в два этапа осуществляется определение распределений вероятностей для выбранных ключевых рисковых переменных.

Первый этап - определение возможного разброса значений для каждой переменной, заключающееся в установлении максимального и минимального значений переменной, т.е. границ, в которых предположительно будут колебаться се значения.

Второй этап - определение распределений вероятностей . По прошлым наблюдениям за переменной можно установить частоту, с которой та принимает соответствующие значения. В этом случае вероятностное распределение есть то же самое частотное распределение, показывающее частоту встречаемости значения, правда, в относительном масштабе (от 0 до 1). Вероятностное распределение регулирует вероятность выбора значений из определенного интервала. В соответствии с заданным распределением модель оценки рисков будет выбирать произвольные значения переменной. До рассмотрения рисков мы подразумевали, что переменная принимает одно определенное нами значение с вероятностью 1. И через единственную итерацию расчетов мы получали однозначно определенный результат. В рамках модели вероятностного анализа рисков проводится большое число итераций, позволяющих установить, как ведет себя результативный показатель (в каких пределах колеблется, как распределен) при подстановке в модель различных значений переменной в соответствии с заданным распределением.

Задача аналитика, занимающегося анализом риска, состоит в том, чтобы хотя бы приблизительно определить для исследуемой переменной вид вероятностною распределения. При этом основные вероятностные распределения, используемые в анализе рисков, могут быть следующими (рис. 10.7): симметричное (например, нормальное, равномерное, треугольное) и несимметричное (например, пошаговое).


Рис. 10.7.

Стадия установления корреляционных связей является очень важной для результативности всего процесса анализа рисков, так как ошибки в выявлении существующих коррелированных переменных модели ведут к серьезным искажениям модельных результатов. Допустим, что цена и количество проданного продукта есть две отрицательно коррелированные переменные. Если не будет учтена связь между ними (коэффициент корреляции), то возможны сценарии, случайно вырабатываемые компьютером, где цена и количество проданной продукции будут либо высоки, либо низки, что естественно негативно отразится на результатах. Поэтому перед проведением имитационных расчетов необходимо выявить все корреляционные зависимости и задать значения коэффициентов корреляции. К достоинствам программного пакета RM относится возможность отражения множественных корреляционных связей.

  • 2. Стадия анализа рисков - проведение расчетных итераций почти полностью выполняется компьютером, па долю аналитика проектных рисков выпадает лишь необходимость задать количество проводимых итераций (от 8 до 10 000). 200-500 итераций обычно достаточно для получения хорошей репрезентативной выборки. В процессе каждой итерации происходит случайный выбор значений ключевых переменных специфицированного интервала в соответствии с вероятностными распсделениями и условиями корреляции. Затем рассчитываются и сохраняются результативные показатели (например, NPV). И так далее, от итерации к итерации.
  • 3. Последней стадией в анализе проектных рисков является анализ результатов , интерпретация результатов, полученных в ходе итерационных расчетов.

Результаты анализа рисков можно представить в виде профиля риска (рис. 10.8). На нем графически показывается вероятность каждого возможного случая (имеются в виду вероятности возможных значений результативного показателя). Часто при сравнении вариантов капиталовложений удобнее пользоваться кривой, построенной на основе суммы вероятностей (кумулятивный профиль риска). Такая кривая показывает вероятность того, что результативный показатель проекта будет больше или меньше определенного значения. Проектный риск , таким образом, описывается положением и наклоном кумулятивного профиля риска.


Рис. 10.8.

Рассмотрим пять иллюстративных случаев принятия решений (учебные материалы Института экономического развития Всемирного банка). Случаи 1-3 имеют дело с решением инвестировать в отдельно взятый проект, тогда как два последних случая (4, 5) относятся к решению-выбору из альтернативных проектов. В каждом случае рассматривается как кумулятивный, так и некумулятивный профили риска для сравнительных целей. Кумулятивный профиль риска более полезен в случае выбора наилучшего проекта из представленных альтернатив , в то время как некумулятивный профиль риска лучше индуцирует вид распределения и показателен для понимания концепций, связанных с определением математического ожидания. Анализ базируется на показателе чистой текущей стоимости NPV.

Случай 1. Минимально возможное значение NPV выше, чем нулевое (рис. 10.9, кривая 1). Вероятность отрицательного NPV равна 0, так как нижний конец кумулятивного профиля риска лежит справа от нулевого значения NPV. Поскольку данный проект имеет положительное значение NPV во всех случаях, ясно, что проект принимается.

Рис. 10.9.

Случай 2. Максимальное возможное значение NPV ниже нулевого (рис. 10.9, кривая 2). Вероятность положительного NPV равна 0, так как верхний конец кумулятивного профиля риска лежит слева от нулевого значения NPV. Поскольку данный проект имеет отрицательное значение NPV во всех случаях, ясно, что проект нс принимается.

Случай 3. Максимальное значение NPV больше, а минимальное - меньше нулевого (рис. 10.9, кривая 3). Вероятность нулевого NPV больше, чем 0, но меньше, чем 1, так как вертикаль нулевого NPV пересекает кумулятивный профиль рисков. Так как NPV может быть как отрицательным, так и положительным, решение будет зависеть от предрасположенности к риску инвестора. По-видимому, если математическое ожидание NPV меньше или равно 0 (пик профиля рисков слева от вертикали или вертикаль точно проходит по пику), проект должен отклоняться от дальнейшего рассмотрения.

Случай 4. Непересекающиеся кумулятивные профили рисков альтернативных (взаимоисключающих) проектов (рис. 10.10). При фиксированной вероятности отдача у проекта В всегда выше, нежели у проекта А. Профиль рисков также говорит о том, что при фиксированной NPV вероятность, с которой та будет достигнута, начиная с некоторого уровня, будет выше для проекта В, чем для проекта А. Таким образом, мы подошли к правилу 1.

Рис. 10.10.

Правило 1. Если кумулятивные профили рисков двух альтернативных проектов не пересекаются ни в одной точке, тогда следует выбирать тот проект, чей профиль рисков расположен правее.

Случай 5. Пересекающиеся кумулятивные профили рисков альтернативных проектов (рис. 10.11). Склонные к риску инвесторы предпочтут возможность получения высокой прибыли и, таким образом, выберут проект А. Несклонные к риску инвесторы предпочтут возможность нести низкие потери и, вероятно, выберут проект В.

Рис. 10.11.

Правило 2. Если кумулятивные профили риска альтернативных проектов пересекаются в какой-либо точке, то решение об инвестировании зависит от склонности к риску инвестора.

Рассмотрим наиболее распространенные показатели совокупного риска проекта.

Ожидаемая стоимость агрегирует информацию, содержащуюся в вероятностном распределении. Она получается умножением каждого значения результативного показателя на соответствующую вероятность и последующего суммирования результатов. Сумма всех отрицательных значений показателя, перемноженных на соответствующие вероятности, есть ожидаемый убыток. Ожидаемый выигрыш - сумма всех положительных значений показателя, перемноженных на соответствующие вероятности. Ожидаемая стоимость есть, конечно, их сумма.

15 качестве индикатора риска ожидаемая стоимость может выступать как надежная оценка только в ситуациях, где операция, связанная с данным риском, может быть повторена много раз. Хорошим примером такого риска служит риск, страхуемый страховыми компиниями, когда последние предлагают обычно одинаковые контракты большому числу клиентов. В инвестиционном проектировании мера ожидаемой стоимости должна всегда применяться в комбинации с мерой вариации, такой как стандартное отклонение.

Инвестиционное решение не должно базироваться лишь на одном значении ожидаемой стоимости, потому что индивид не может быть равнодушен к различным комбинациям значения показателя отдачи и соответствующей вероятности, из которых складывается ожидаемая стоимость.

Издержки неопределенности , или ценность информации, как они иногда называются, - понятие, помогающее определить максимально возможную плату за получение информации, сокращающей неопределенность проекта. Эти издержки можно определить как ожидаемую стоимость возможного выигрыша при решении отклонить проект или как ожидаемую стоимость возможного убытка при решении принять проект.

Ожидаемая стоимость возможного выигрыша при решении отклонить проект иллюстрируется на рис. 10.12 и равна сумме возможных положительных значений NPV, перемноженных на соответствующие вероятности.

Ожидаемая стоимость возможного убытка при решении принять проект, показанная в виде заштрихованной площади на рис. 10.13, равна сумме возможных отрицательных значений NPV, перемноженных на соответствующие вероятности.

Оценив возможное сокращение издержек неопределенности при приобретении дополнительной информации, инвестор решает, отложить решение принять или отклонить проект и искать дополнитель-


Рис. 10.13.

Рис. 10.12. Ожидаемая стоимость возможного выигрыша при решении отложить проект ную информацию или принимать решение немедленно. Общее правило таково: инвестору следует отложить решение, если возможное сокращение в издержках неопределенности превосходит издержки добывания дополнительной информации.

Нормированный ожидаемый убыток - отношение ожидаемого убытка к ожидаемой стоимости. Этот показатель может принимать значения от 0 (отсутствие ожидаемого убытка) до 1 (отсутствие ожидаемого выигрыша). На рисунке 10.13 он представляется как отношение площади под профилем риска слева от нулевого NPV ко всей площади под профилем риска.

Проект с вероятностным распределением NPV, таким что область определения профиля риска NPV выше 0, имеет нормируемый ожидаемый убыток, равный 0, что означает абсолютную неподверженность риску проекта. Проект, область определения профиля риска NPV которого ниже 0, полностью подвержен риску.

Данный показатель определяет риск как следствие двух вещей: наклона и положения профиля риска NPV по отношению к разделяющей вертикали нулевого NPV.

Несмотря на свои достоинства, метод Монте-Карло нс распространен и не используется слишком широко в бизнесе. Одна из главных причин этого - неопределенность функций плотности переменных, которые используются при подсчете потоков наличности.

Другая проблема, которая возникает как при использовании метода сценариев, так и при использовании метода Монте-Карло, состоит в том, что применение обоих методов нс даст однозначного ответа на вопрос о том, следует ли реализовывать данный проект или следует отвергнуть его.

При завершении анализа, проведенного методом Монте-Карло, у эксперта есть значение ожидаемой чистой приведенной стоимости проекта и плотность распределения этой случайной величины. Однако наличие этих данных нс обеспечивает аналитика информацией о том, действительно ли прибыльность проекта достаточно велика, чтобы компенсировать риск по проекту, оцененный стандартным отклонением и коэффициентом вариации.

Ряд исследователей избегают использования данного метода ввиду сложности построения вероятностной модели и множества вычислений, однако при корректности модели метод дает весьма надежные результаты, позволяющие судить как о доходности проекта, так и о его устойчивости (чувствительности).

В зависимости от результатов завершенного анализа рисков, а также и от того, насколько склонен к риску инвестор, последний принимает решение принять, изменить или отклонить проект.

Например, инвестор, исходя из своей склонности к риску, действовал бы следующим образом:

? Риск > 30%.

В случае если показатель риска, а это прежде всего нормированный ожидаемый убыток (НОУ), равен или превышает 30%, то для принятия проекта необходимо предварительно внести и осуществить предложения по снижению риска. Под предложениями понимаются любые действия по изменению данных на входе, способные уменьшить риск, не обрекая проект на убыточность.

В этих целях используются разработанные заранее правила поведения участников в определенных «нештатных» ситуациях (например, сценарии, предусматривающие соответствующие действия участников при тех или иных изменениях условий реализации проекта).

В проектах могут предусматриваться также специфические механизмы стабилизации, обеспечивающие защиту интересов участников при неблагоприятном изменении условий реализации проекта (в том числе, в случаях, когда цели проекта будут достигнуты нс полностью или не достигнуты вообще) и предотвращающие возможные действия участников, ставящие под угрозу его успешную реализацию. В одном случае может быть снижена степень самого риска (за счет дополнительных затрат на создание резервов и запасов, совершенствование технологий, уменьшение аварийности производства, материальное стимулирование повышения качества продукции), в другом - риск перераспределяется между участниками (индексирование цен, предоставление гарантий, различные формы страхования, залог имущества, система взаимных санкций).

Как правило, применение в проекте стабилизационных механизмов требует от участников дополнительных затрат, размер которых зависит от условий реализации мероприятия, ожиданий и интересов участников, их оценок степени возможного риска. Такие затраты подлежат обязательному учету при определении эффективности проекта.

Здесь работает балансировка между риском и прибыльностью. Если на этом этапе удается снизить риск так, что НОУ становится меньше 30%, и есть выбор среди такого рода вариантов проекта, то лучше выбрать тот из них, у которого коэффициент вариации меньше. Если же не удается снизить риск до указанной отметки, проект отклоняется.

? Риск

Проекты с риском менее 30% (НОУ Предлагается создать страховой фонд в размере определенной доли от основной суммы инвестирования. Как определить эту долю - это вопрос методики. Можно принять се равной значению показателя риска (нормированный ожидаемый убыток). То есть, например, если риск равен 25%, то необходимо, скажем, предусмотреть отчисления от нераспределенной прибыли в процессе осуществления проекта или заключить договор со страховой компанией на сумму в размере 25% от основной суммы инвестирования и направить эти деньги в резерв, подлежащий использованию только в случае наступления крайних ситуаций, связанных, например, с незапланированным недостатком свободных денежных средств, а также другими проблемами, в целях нормализации финансово-экономической ситуации. На самом деле источник оплаты страхового фонда скорее всего будет зависеть от периода осуществления проекта. В самый трудный в финансовом отношении начальный момент осуществления проекта у предприятия вряд ли найдется возможность обойтись без внешнего окружения при создании страхового фонда, например, на базе страховой компании. Но по мере осуществления проекта у предприятия накапливается прибыль, ежегодные отчисления от которой могли бы составить страховой фонд.